Seismic response analysis of Shallow-buried Multi-Arch Tunnel
-
摘要: 随着工程建设技术的发展及需求的提高,大跨度多连拱隧道逐渐大量出现,其抗震性能值得关注。本文以某多连拱隧道为依托,建立二维计算模型,采用等价线性化模型Davidenkov模型考虑土体非线性特性,探讨该类结构地震响应规律。首先将拱形隧道地震响应与等截面矩形隧道的地震响应相比较,分析截面形式对结构地震响应的影响。其次,探讨拱数(跨数)、奇偶性对浅埋多连拱地下结构地震响应的影响。结果表明:(1)矩形较拱形结构产生更大残余变形;(2)结构的响应随拱数(跨数)的增加而增加,且增加的幅度高达30%;(3)奇、偶数拱结构的动力响应差异不明显。研究成果可为多连拱、大跨度浅埋隧道的抗震设计提供参考。Abstract: With the development of construction technology and the improvement of practical demand, large-span multi-arch tunnel appears gradually, and its seismic performance is worthy of attention. Based on a multi-arch tunnel, a two-dimensional model is established, and the equivalent linear model Davidenkov model is employed to study the seismic response of this kind of structure. Firstly, the seismic response of arch tunnel is compared with that of rectangular tunnel, and the influence of cross-section on the seismic response of structure is analyzed. Secondly, the influence of arch number (span) and parity on seismic response of shallow multi-arch underground structure is discussed. The results show that: (1) the residual deformation of the rectangular structure is larger than that of the arch structure; (2) the response of the structure increases with the increase of the number of arches (span) , and the increasing range is about 30%; (3) the difference of dynamic response between odd and even arch structures is not obvious. The research results can provide reference for the seismic design of multi-arch and large-span shallow-buried tunnel.
-
Key words:
- multi-arch tunnel /
- tunnel structure /
- shallow tunnel /
- multi-span /
- seismic response
-
表 1 土层计算参数
Table 1. Soil calculation parameters
土层 厚度/m 密度(kg·m−3) 剪切波速(m·s−1) 泊松比 拟合参数 α 2β $ {\gamma }_{\mathrm{r}} $ 杂填土、黏土 30 1850 200 0.493 1 0.78 7.44×10−4 强风化花岗岩 20 2000 450 0.485 1 0.73 12.26×10−4 表 2 计算工况表
Table 2. Calculation cases
工况 地震波 幅值 结构形式 1 EL波 0.1 g 自由场 2 Kobe波 3 EL波 0.1 g 双连拱 4 Kobe波 5 EL波 0.1 g 双跨矩形 6 Kobe波 7 EL波 0.1 g 三连拱 8 Kobe波 9 EL波 0.1 g 三跨矩形 10 Kobe波 11 EL波 0.1 g 四连拱 12 Kobe波 13 EL波 0.1 g 四跨矩形 14 Kobe波 15 EL波 0.1 g 五连拱 16 Kobe波 17 EL波 0.1 g 五跨矩形 18 Kobe波 19 EL波 0. 1 g 七连拱 20 Kobe波 21 EL波 0.1 g 七跨矩形 22 Kobe波 表 3 层间位移角
Table 3. Interlayer displacement angle
地震波 层间位移角 拱形 矩形 EL波 1/ 1471 1/ 1515 Kobe波 1/ 1234 1/ 1351 表 4 各类结构顶板最大水平加速度(单位:m/s2)
Table 4. Maximum horizontal acceleration at roof with different span (Unit: m/s2)
结构类型/地震波 三连拱 三跨矩形 五连拱 五跨矩形 七连拱 七跨矩形 EL波 1.26 1.34 1.33 1.54 1.34 1.37 1.35 1.84 Kobe波 1.41 1.50 1.65 1.72 表 5 各类结构最大层间位移角
Table 5. Maximum interlayer displacement angle of structures with different spans
结构类型/地震波 三连拱 三跨矩形 五连拱 五跨矩形 七连拱 七跨矩形 EL波 1/1470 1/1515 1/1087 1/943 1/1149 1/877 1/952 1/763 Kobe波 1/1234 1/1351 1/980 1/704 -
陈磊, 陈国兴, 陈苏等, 2012. 三拱立柱式地铁地下车站结构三维精细化非线性地震反应分析. 铁道学报, 34(11): 100−107. doi: 10.3969/j.issn.1001-8360.2012.11.016Chen L., Chen G. X., Chen S., et al., 2012. 3D refined nonlinear analysis on seismic responses of three-arch and two-column subway station structure. Journal of the China Railway Society, 34(11): 100−107. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.11.016 陈苏, 陈国兴, 戚承志等, 2015. 可液化场地上三拱立柱式地铁地下车站结构地震反应特性振动台试验研究. 岩土力学, 36(7): 1899−1914. doi: 10.16285/j.rsm.2015.07.010Chen S., Chen G. X., Qi C. Z., et al., 2015. A shaking table-based experimental study of seismic response of three-arch type's underground subway station in liquefiable ground. Rock and Soil Mechanics, 36(7): 1899−1914. (in Chinese) doi: 10.16285/j.rsm.2015.07.010 郭远鹏, 陈之毅, 李得睿等, 2023. 逆断层作用下上覆土层与隧道变形传递模型试验研究. 震灾防御技术, 18(2): 226−234. doi: 10.11899/zzfy20230203Guo Y. P., Chen Z. Y., Li D. R., et al., 2023. Model test study on deformation transfer between overlying soil layer and tunnel under reverse fault action. Technology for Earthquake Disaster Prevention, 18(2): 226−234. (in Chinese) doi: 10.11899/zzfy20230203 季倩倩, 2002. 地铁车站结构振动台模型试验研究. 上海: 同济大学. 江学良, 张继琪, 杨慧等, 2020. 多因素作用下含连拱隧道边坡地震动力响应特性研究. 振动工程学报, 33(6): 1291−1301. doi: 10.16385/j.cnki.issn.1004-4523.2020.06.021Jiang X. L., Zhang J. Q., Yang H., et al., 2020. Seismic dynamic response characteristics of slope with double-arch tunnel under multiple factors. Journal of Vibration Engineering, 33(6): 1291−1301. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2020.06.021 李彬, 刘晶波, 刘祥庆, 2008. 地铁地下结构地震反应影响因素分析. 见: 第17届全国结构工程学术会议论文集(第Ⅱ册). 武汉: 中国力学学会结构工程专业委员会, 2008: 278−283. 刘祥庆, 刘晶波, 2008. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析. 工程力学, 25(10): 150−157.Liu X. Q., Liu J. B., 2008. Time history analysis of elasto-plastic seismic response of a subway station structure with arched cross section based on fiber model. Engineering Mechanics, 25(10): 150−157. (in Chinese) 彭述权, 刘贤, 樊玲等, 2023. 地震动和断层错动联合作用下隧道纵向响应解析解. 震灾防御技术, 18(2): 215−225. doi: 10.11899/zzfy20230202Peng S. Q., Liu X., Fan L., et al., 2023. Analytical solution for the longitudinal response of tunnels under combined seismic-fault misalignment. Technology for Earthquake Disaster Prevention, 18(2): 215−225. (in Chinese) doi: 10.11899/zzfy20230202 陶连金, 王文沛, 张波等, 2012. 竖向强震作用下密贴地铁地下交叉结构动力响应分析. 岩土工程学报, 34(3): 433−437.Tao L. J., Wang W. P., Zhang B., et al., 2012. Dynamic response of closely-attached intersecting underground subway structures under vertical strong ground motion. Chinese Journal of Geotechnical Engineering, 34(3): 433−437. (in Chinese) 杨慧, 刘潺, 江学良等, 2020. 浅埋偏压连拱隧道地震响应规律研究. 自然灾害学报, 29(4): 161−172. doi: 10.13577/j.jnd.2020.0417Yang H., Liu C., Jiang X. L., et al., 2020. Study on seismic response law of shallow-buried bias double-arch tunnel. Journal of Natural Disasters, 29(4): 161−172. (in Chinese) doi: 10.13577/j.jnd.2020.0417 姚超凡, 晏启祥, 何川等, 2014. 深埋双圆盾构隧道的横向地震响应特性研究. 铁道标准设计, 58(4): 74−77.Yao C. F., Yan Q. X., He C., et al., 2014. Study on transverse seismic response of deeply-buried double-O-tube shield tunnel. Railway Standard Design, 58(4): 74−77. (in Chinese) 张建, 郭子润, 李超杰等, 2024. 浅埋偏压黄土双连拱隧道-边坡地震响应特性研究. 公路, 69(5): 457−465.Zhang J., Guo Z. R., Li C. J., et al., 2024. Research on seismic response characteristics of double-arch tunnel-slope in shallow-buried biased loess. Highway, 69(5): 457−465. (in Chinese) 张鹏, 刘春阳, 张继清, 2014. 北京地铁车站结构抗震分析. 铁道标准设计, 58(1): 97−101. doi: 10.13238/j.issn.1004-2954.2014.01.024Zhang P., Liu C. Y., Zhang J. Q., 2014. Seismic analysis of station structures of Beijing metro. Railway Standard Design, 58(1): 97−101. (in Chinese) doi: 10.13238/j.issn.1004-2954.2014.01.024 周捷, 李洪彬, 张鑫等, 2022. 不同宽高比连拱隧道薄直中墙地震动力响应研究. 公路, 67(12): 397−402.Zhou J., Li H. B., Zhang X., et al., 2022. Study on seismic dynamic response of thin straight middle wall of multi-arch tunnel with different width-height ratio. Highway, 67(12): 397−402. (in Chinese) Sun F. X., Shi L. F., Wang J. N., et al., 2023. Seismic response analysis of close-distance cross tunnels: shaking table test and numerical parameter analysis. Structures, 50: 1670−1685. doi: 10.1016/j.istruc.2023.02.121 Wang G. B., Shi L. F., Wang J. N., et al., 2023. Experimental and numerical studies on the seismic response of adjacent horizontal parallel tunnels. Soil Dynamics and Earthquake Engineering, 172: 107992. doi: 10.1016/j.soildyn.2023.107992 Zhuang H. Y., Hu Z. H., Wang X. J., et al., 2015. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling. Bulletin of Earthquake Engineering, 13(12): 3645−3668. doi: 10.1007/s10518-015-9790-6 -
下载: