• ISSN 1673-5722
  • CN 11-5429/P

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

梁晓 姜浩然 李芳芳

梁晓,姜浩然,李芳芳,2024. 自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析. 震灾防御技术,19(3):613−628. doi:10.11899/zzfy20240319. doi: 10.11899/zzfy20240319
引用本文: 梁晓,姜浩然,李芳芳,2024. 自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析. 震灾防御技术,19(3):613−628. doi:10.11899/zzfy20240319. doi: 10.11899/zzfy20240319
Liang Xiao, Jiang Haoran, Li Fangfang. Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 613-628. doi: 10.11899/zzfy20240319
Citation: Liang Xiao, Jiang Haoran, Li Fangfang. Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 613-628. doi: 10.11899/zzfy20240319

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

doi: 10.11899/zzfy20240319
基金项目: 国家自然科学基金(52238012、52278515、52308519);天津市科技计划项目(23JCYBJC00750、23JCQNJC00910)
详细信息
    作者简介:

    梁晓,女,生于1987年。博士,副教授。主要从事工程结构抗震研究。E-mail:xliang@tcu.edu.cn

    通讯作者:

    李芳芳,女,生于1988年。博士。主要从事工程结构抗震研究。E-mail:fangfangbjut@126.com

Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers

  • 摘要: 为评估自复位预制节段拼装中空夹层钢管混凝土(Concrete-filled Double Skin Steel Tubular, CFDST)桥墩在地震动作用下的易损性,本研究基于现有的低周反复荷载试验数据,采用有限元分析方法,选用墩顶水平位移角和残余位移角2个指标作为评估标准进行定量分析。针对3种不同类型地震动(远场、近场无脉冲和近场有脉冲),分别建立了关于水平位移角和残余位移角2个指标的易损性曲线,并分析了不同损伤指标和地震动类型对其地震易损性的影响。研究结果表明,在自复位预制节段拼装CFDST桥墩地震易损性分析中,仅采用水平位移角作为损伤指标是安全可靠的;相比远场地震动和近场无脉冲型地震动而言,近场脉冲型地震动对自复位预制节段拼装CFDST桥墩的变形和自复位有显著影响。
  • 桥梁结构作为交通生命线通道,不仅应确保地震动激励下不倒塌,同时应具备震后快速恢复能力。大量研究表明,通过在桥墩中施加体外预应力可以有效控制和减小桥墩震后残余位移(贾俊峰等,2017),预制节段拼装桥墩采用无粘结预应力筋将预制节段连接成整体,同时能够为其提供自复位功能,实现其震后使用功能的快速恢复。然而仅配置无粘结预应力筋的预制节段拼装桥墩,其耗能能力远小于传统的现浇桥墩(Mander等,1997Hewes等,2002葛继平等,2011贾俊峰等,2017),当节段关于底部接缝发生转动时容易出现应力集中,导致混凝土过早压碎。鉴于中空夹层钢管混凝土(CFDST)截面具有良好的约束效应,Li等(2023a2023b)研发了一种具有低损伤、自复位和易施工特点的预制节段拼装CFDST桥墩(图1),为研究该桥墩的抗震性能,开展了低周反复荷载试验和数值仿真分析,研究结果表明,该自复位预制节段拼装CFDST桥墩结合了中空夹层钢管混凝土轻质高强度和延性好的特点,同时展现出良好的自复位和耗能能力。

    图 1  自复位预制节段拼装CFDST桥墩构造示意图
    Figure 1.  Diagram of self-centering precast segmental assembled CFDST pier

    易损性分析是一种基于概率的方法评估结构或构件抗震性能的手段(Muntasir Billah等,2015a贾晗曦等,2019),已广泛应用于整体现浇的混凝土桥墩(何益斌等,2012赵建锋等,2018许成祥等,2022石岩等,2022)和钢管混凝土。相比整体现浇的钢筋混凝土桥墩而言,针对节段拼装桥墩的地震易损性研究尚未充分展开。已有研究对装配式中小跨径梁桥(张云等,2014)、预制拼装超高性能混凝土(UHPC)矩形空心墩(王震,2018)、消能自复位摇摆墩(周雨龙等,2021)、后张预应力预制节段拼装桥墩(Ahmadi等2022)、附加自复位耗能支撑双柱式桥墩(董慧慧等,2023)等进行了易损性分析,并给出了性能指标及各种损伤状态的界定值。此外,胡志坚等(2022)以2种不同连接方式(无榫头平面接缝和带榫头的灌浆波纹管连接)的预制拼装桥墩为研究对象,通过低周反复荷载试验确定了预制拼装桥墩易损性分析的损伤量化指标限值。林上顺等(2024)基于一种采用混合连接装配式桥墩的拟静力试验,采用有限元软件OpenSees进行时程分析,并对其进行地震易损性评估,强调了混合连接设计在提升桥墩抗倒塌能力方面的重要性。

    为评估自复位预制节段拼装CFDST桥墩在不同类型地震动下的抗震性能,本研究基于该自复位预制节段拼装CFDST桥墩的低周反复荷载试验研究,建立了该桥墩的有限元模型,通过数值模拟和试验结果对比验证其有效性。基于验证的数值模型,采用增量动力分析方法对预制节段拼装CFDST桥墩在远场、近场无脉冲和近场脉冲型地震动作用下的抗震性能定量评估,分别建立了该自复位预制节段拼装CFDST桥墩关于水平位移角和残余位移角2个损伤指标的易损性曲线,进一步探讨地震动类型、损伤指标等因素对该自复位预制节段拼装CFDST桥墩地震易损性的影响。

    原型现浇CFDST桥墩有效高度L为7 m,所受上部结构传递的重力荷载NG3600 kN,基本地震加速度峰值PGA为0.2 g。与已完成的低周反复荷载试验中现浇桥墩试件CFDST(Li等,2023b)的材料强度等级和截面设计(空心率$\chi $ = 0.6和外层、内层钢管径厚比Ds/ts = 58、80)保持一致,原型现浇CFDST桥墩的外层钢管外径Ds,o = 1625 mm,壁厚ts,o = 28 mm;内层钢管外径Ds,i = 965 mm,壁厚ts,i = 12 mm。因此,原型现浇CFDST桥墩的恒载轴压比ηG = NG/fcAc = 0.1(其中Ac是核心混凝土面积,fc是混凝土抗压强度设计值);根据T/CCES 7—2020 《中空夹层钢管混凝土结构技术规程》,若同时考虑外层、内层钢管和夹层混凝土对CFDST截面轴压承载力的贡献,则原型现浇桥墩的恒载轴压比ηG = NG/Nu = 0.06。原型现浇桥墩尺寸和截面设计如图2所示。

    图 2  试件截面尺寸(单位:毫米)
    Figure 2.  Cross-sectional dimension of specimen (Unit: mm)

    与原型现浇桥墩截面尺寸和上部结构传递的重力荷载保持一致,预制节段拼装CFDST桥墩包含3个高度为2125 mm的CFDST节段,桥墩中心设置配筋率为0.2的预应力钢绞线(公称直径为15.2 mm),为防止预应力筋屈服(Dawood等,2014)该预应力钢绞线后张至45%fpu fpu = 1860 MPa),其中fpu为预应力筋的极限抗拉强度,提供初始预应力约Np = 3600 kN,对应的预应力轴压比ηp = Np/ fcAc = 0.1。在墩底节段沿核心混凝土圆周均布HRB400级钢筋作为耗能钢筋,提供耗能能力,耗能钢筋配筋率为0.65。耗能钢筋在底接缝处设置750 mm的无粘结段(Ou等,2010),防止最底部的接缝开口导致耗能钢筋过早断裂,同时为避免基础高度过大,保证最底段耗能钢筋与基础均有足够的锚固长度,将耗能钢筋分开,一半置于桥墩最底段,一半置于基础中。

    本文基于OpenSees的纤维单元模型(司炳君等,2017孙治国等,2019)建立桥墩数值模型如图3所示,该模型主要由圆形CFDST节段、接缝、无粘结预应力钢绞线和耗能钢筋组成,假定:①节段截面变形符合平截面假定;②不考虑节段剪切变形的影响;③相邻节段之间不存在水平剪切滑移;④忽略耗能钢筋的应变渗透效应,以及钢管与混凝土间粘结滑移的影响。

    图 3  自复位预制节段拼装CFDST桥墩数值模型
    Figure 3.  Numerical model of self-centering precast segmental assembled CFDST pier

    圆形CFDST节段采用基于纤维的非线性梁柱单元(Fiber-based Nonlinear Beam-column Element),利用纤维截面模拟外层、内层钢管和夹层混凝土之间的相互作用,外层、内层钢管和夹层混凝土纤维均采用非线性单轴本构模型(图3(b))。内、外层钢管纤维采用Steel 02本构模型(Menegotto,1973Filippou等1983)(图3 (c)),图中,fy为钢材的屈服强度,Es为初始弹性模量,EP为屈服后的切线模量(通常应变强化率b=Ep/Es=0.01),R0cR1cR2a1a2a3a4分别为控制从弹性段到塑性段过渡的参数和等向强化参数,具体数值参考OpenSees使用手册(Mazzoni等,2009)。夹层混凝土纤维采用Concrete 02本构模型,该模型受压部分基于单轴Kent-Park材料模型(Kent等,1971),受拉部分采用双折线抗拉强度模型,其卸载曲线为双折线分段形式,可模拟卸载过程中的刚度变化。圆形CFDST节段的夹层混凝土在外层、内层钢管失效前处于三轴约束状态,通过改变Concrete 02本构模型的峰值压应力fcc和峰值压应变εcc来考虑钢管对夹层混凝土的约束效应(图3 (c)),其峰值压应力fcc、峰值压应变εcc和极限压应变εcu根据Mander本构模型(Mander等,1988)确定。

    为模拟节段拼装桥墩接缝处的反应,墩底接缝处沿水平方向均匀设置5个底部固结的Zerolength弹簧单元(图3 (a)),弹簧顶部各节点由Rigid Link刚臂单元连接。Zerolength弹簧单元赋予Elastic-No Tension材料(孙治国等,2019Li等,2021),其单轴本构模型如图3(c)所示,图中E为该材料的受压刚度,根据司炳君等(2017)提出的经验公式(式1)进行计算。此外,为简化数值模型,其余接缝采用Zerolength Section弹簧单元(孙治国等,2019Zhang等,2022),如图3(a)所示,赋予混凝土纤维截面不考虑抗拉强度的Concrete 01材料本构(图3(c))。

    $$ E = \frac{{{E_{\text{c}}}A}}{{Ln}}\theta $$ (1)

    式中,Ec为混凝土的受压弹性模量;A为桥墩截面面积;n为Zerolength弹簧单元的个数;L为桥墩有效高度;θ 为经验系数,此处θ = 1(司炳君等,2017)。

    无粘结预应力钢绞线选用Truss单元模拟,其底部节点固结,通过Rigid Link刚臂单元将其顶部节点与桥墩顶部连接,通过赋予Steel 02材料初始应力值(图3(c))施加预应力。在圆形CFDST节段中,耗能钢筋与周围混凝土保持粘结状态,通过在墩身的Fiber-based Nonlinear Beam-column单元中建立钢筋纤维,并赋予材料Steel 02的本构以模拟耗能钢筋的功能。在墩底接缝处,耗能钢筋的无粘结段的建模方法与无粘结预应力钢绞线一致,均采用Truss单元并赋予Steel 02材料的本构,且Truss单元的底部节点固结,顶部节点通过Rigid Link刚臂单元与桥墩相应节点连接,从而保证耗能钢筋与桥墩变形相协调。本研究的有限元模型材料参数详见Li 等(2023b)。

    为验证该模型的准确性,对Li等(2023b)开展的预制节段拼装CFDST桥墩低周反复荷载试验进行数值仿真分析,其滞回曲线与试验对比如图4所示,关键性能指标对比如表1所示。通过对比分析可知,该模型能较准确模拟预制节段拼装CFDST桥墩的力学性能,仿真分析所得该自复位预制节段拼接CFDST桥墩的屈服位移、屈服荷载、峰值荷载、弹性刚度、残余位移等关键性能指标均与试验结果吻合较好,两者误差均在6.0%以内。

    图 4  滞回曲线(Li等,2023b
    Figure 4.  Hysteretic curve of self-centering precast segmental assembled CFDST piers (Li et al., 2023b
    表 1  关键性能指标
    Table 1.  Critical performance indexes
    屈服位移/mm 屈服荷载/kN 峰值荷载/kN 弹性刚度/(kN·mm−1) 峰值残余位移/mm
    试验 17.8 208 319 11.7 30.0
    模拟 18.0 216 308 12.0 31.8
    相对误差 1.1% 3.8% 3.4% 2.6% 6.0%
    下载: 导出CSV 
    | 显示表格

    Luco等(2000)研究表明,采用增量动力分析(Increment Dynamic Analysis,IDA)方法对结构进行地震易损性分析过程中,地震动选用10~20条足以确保对其评估的准确性。为了对比分析不同类型地震动对该自复位预制节段拼装CFDST桥墩易损性的影响,本文从PEER地震动数据库中分别选取20条近场脉冲无型地震动记录、20条近场脉冲地震动和20条远场地震动进行IDA分析,场地类型对应中国规范的Ⅱ类场地,详细的地震动信息如表2表4所示,表中Rrup表示测点距断层破裂面最短距离,T90%表示地震波记录的90%持时。对每次地震记录的加速度峰值进行调整,峰值加速度为0.1 g ~1.5 g,增量为0.1 g,分别记录不同强度、不同类型地震动激励下自复位预制节段拼装CFDST桥墩的动力响应。

    表 2  远场地震动记录
    Table 2.  Far-field ground motion records
    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Northwest Calif-01" 1938 "Ferndale City Hall" 5.5 53.58 11.6
    2 "Northwest Calif-02" 1941 "Ferndale City Hall" 6.6 91.22 22.2
    3 "Northern Calif-01" 1941 "Ferndale City Hall" 6.4 44.68 15.5
    4 "Borrego" 1942 "El Centro Array #9" 6.5 56.88 37.2
    5 "Northwest Calif-03" 1951 "Ferndale City Hall" 5.8 53.77 15.4
    6 "Kern County" 1952 "LA - Hollywood Stor FF" 7.36 117.75 33.5
    7 "Kern County" 1952 "Pasadena - CIT Athenaeum" 7.36 125.59 29.5
    8 "Kern County" 1952 "Santa Barbara Courthouse" 7.36 82.19 33.6
    9 "Kern County" 1952 "Taft Lincoln School" 7.36 38.89 30.3
    10 "Northern Calif-02" 1952 "Ferndale City Hall" 5.2 43.28 18.4
    11 "Northern Calif-03" 1954 "Ferndale City Hall" 6.5 27.02 19.4
    12 "El Alamo" 1956 "El Centro Array #9" 6.8 121.7 40.9
    13 "Northern Calif-04" 1960 "Ferndale City Hall" 5.7 57.21 28.4
    14 "Northern Calif-05" 1967 "Ferndale City Hall" 5.6 28.73 22.1
    15 "Borrego Mtn" 1968 "El Centro Array #9" 6.63 45.66 49.3
    16 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 129.11 28
    17 "San Fernando" 1971 "2516 Via Tejon PV" 6.61 55.2 54.2
    18 "San Fernando" 1971 "Carbon Canyon Dam" 6.61 61.79 18.9
    19 "San Fernando" 1971 "Castaic-Old Ridge Route" 6.61 22.63 16.8
    20 "San Fernando" 1971 "Fairmont Dam" 6.61 30.19 14.4
    下载: 导出CSV 
    | 显示表格
    表 3  近场无脉冲型地震动
    Table 3.  Near-field non-pulse-like ground motion
    编号地震名称年份站台名称震级/级Rrup /kmT90%/s
    1"Imperial Valley-02"1935"El Centro Array #9"6.956.0924.2
    2"Hollister-02"1961"Hollister City Hall"5.518.0816.5
    3"Parkfield"1966"Cholame - Shandon Array #12"6.1917.6429
    4"Parkfield"1966"Cholame - Shandon Array #5"6.199.587.5
    5"Parkfield"1966"Cholame - Shandon Array #8"6.1912.913.1
    6"Managua_Nicaragua-01"1972"Managua_ ESSO"5.244.0610.6
    7"Hollister-03"1974"Hollister City Hall"5.179.3910.9
    8"Coyote Lake"1979"Coyote Lake Dam - Southwest Abutment"5.746.138.5
    9"Imperial Valley-06"1979"Calexico Fire Station"6.5310.4514.8
    10"Imperial Valley-06"1979"Cerro Prieto"6.5315.1936.4
    11"Imperial Valley-06"1979"Chihuahua"6.537.2924
    12"Imperial Valley-06"1979"Parachute Test Site"6.5312.6918.6
    13"Imperial Valley-07"1979"El Centro Array #5"5.0111.237
    14"Imperial Valley-07"1979"El Centro Array #6"5.0110.376.5
    15"Mammoth Lakes-02"1980"Mammoth Lakes H. S."5.699.123.9
    16"Mammoth Lakes-03"1980"Convict Creek"5.9112.436.3
    17"Mammoth Lakes-03"1980"Long Valley Dam (Downst)"5.9118.1312.4
    18"Mammoth Lakes-03"1980"Long Valley Dam (Upr L Abut)"5.9118.138.4
    19"Mammoth Lakes-061980"Fish & Game (FIS)"5.9412.935.1
    20"Westmorland"1981"Salton Sea Wildlife Refuge"5.97.839.1
    下载: 导出CSV 
    | 显示表格
    表 4  近场脉冲型地震动
    Table 4.  Near-field pulse-like ground motion records
    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    2 "Coyote Lake" 1979 "Gilroy Array #3" 5.74 7.42 8.7
    3 "Coyote Lake" 1979 "Gilroy Array #4" 5.74 5.7 11
    4 "Imperial Valley-06" 1979 "Agrarias" 6.53 0.65 13.3
    5 "Imperial Valley-06" 1979 "Brawley Airport" 6.53 10.42 14.9
    6 "Imperial Valley-06" 1979 "EC County Center FF" 6.53 7.31 13.2
    7 "Imperial Valley-06" 1979 "El Centro Array #10" 6.53 8.6 12.8
    8 "Imperial Valley-06" 1979 "El Centro Array #3" 6.53 12.85 14.1
    9 "Imperial Valley-06" 1979 "Holtville Post Office" 6.53 7.5 12.8
    10 "Irpinia_ Italy-01" 1980 "Bagnoli Irpinio" 6.9 8.18 19.6
    11 "Irpinia_ Italy-01" 1980 "Sturno (STN)" 6.9 10.84 15.2
    12 "Westmorland" 1981 "Parachute Test Site" 5.9 16.66 18.7
    13 "Morgan Hill" 1984 "Gilroy Array #6" 6.19 9.87 7.3
    14 "Kalamata_ Greece-02" 1986 "Kalamata (bsmt) (2 nd trigger)" 5.4 5.6 2.9
    15 "Superstition Hills-02" 1987 "Kornbloom Road (temp)" 6.54 18.48 13.9
    16 "Loma Prieta" 1989 "Gilroy - Historic Bldg." 6.93 10.97 13.1
    17 "Loma Prieta" 1989 "Saratoga - W Valley Coll." 6.93 9.31 11.1
    18 "Kocaeli_ Turkey" 1999 "Arcelik" 7.51 13.49 11.1
    19 "Kocaeli_ Turkey" 1999 "Gebze" 7.51 10.92 8.2
    20 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    下载: 导出CSV 
    | 显示表格

    目前,在结构抗震设计和地震易损性分析中,基于位移的抗震设计方法已被广泛采用。残余位移是评价桥梁结构自复位能力的重要指标,日本桥梁抗震设计规程《Design specifications specifications for highway bridges: part Ⅴ: seismic design》(Japan Road Association,2002))规定现浇桥墩的震后残余位移角限值为1.0%,FEMA P-58-1《Seismic performance assessment of buildings, volume 1: methodology》提出了采用最大位移计算残余位移的方法。国内外学者也开展了大量试验与理论研究,揭示了现浇桥墩残余位移产生机理(Kawashima等,1998Christopoulos等,2003),提出了采用无量纲残余位移延性指标或以最大位移作为归一化参数的无量纲残余位移指标定量评估残余位移的计算公式(Hose等,2000罗征等,2013胡晓斌等,2015张勤等,2017王军文等,2018曾武华等,2021)。参考Hose等(2000)提出的损伤等级划分方法,将该自复位预制节段拼装CFDST桥墩的损伤分为基本完好、轻微损伤、可恢复损伤/生命安全、严重损伤/防止倒塌、局部失效/倒塌5个等级。根据桥墩的受力特点、延性构件的设计要求和可恢复性能要求,本文选用墩顶的水平位移角θdr和残余位移角θR 2个指标对自复位桥墩的损伤状态进行定量界定。墩顶水平位移角按照公式(2)进行计算,残余位移角按照公式(3)进行计算:

    $$ {\theta }_{\mathrm{d}\mathrm{r}}=\frac{{\varDelta }_{\mathrm{m}\mathrm{a}\mathrm{x}}}{H} $$ (2)
    $$ {\theta }_{\mathrm{R}}=\frac{{\varDelta }_{\mathrm{R}}}{H} $$ (3)

    式中,Δmax表示地震动激励下墩顶水平位移响应的最大值;ΔR表示震后墩顶的残余位移;H表示桥墩的有效高度。

    自复位预制节段拼装CFDST桥墩拟静力试验与有限元分析结果(Li等,2023b)表明,当桥墩试件墩顶的水平位移角θdr 为 0.64%时,耗能钢筋达到屈服状态;墩顶的水平位移角θdr 为7.58%时,耗能钢筋被拉断。除上述损伤破坏状态外,桥墩其它组成部分无损伤发生,即钢绞线未达到屈服状态、内/外层钢管无屈曲现象、核心混凝土未压碎、节段间接缝无剪切错动。因此,根据上述桥墩损伤破坏特点,以耗能钢筋的材料应变限值定量划分内置耗能钢筋的预制节段拼装CFDST桥墩的性能水准。通常当耗能钢筋首次屈服前(ε < εy),预制节段拼装CFDST桥墩处于弹性状态,也就是该桥墩处于基本完好的水准。参照Kowalsky等(2000)、蒋欢军等(2010)、刘艳辉等(2010)、魏标(2010)等建议,当耗能钢筋拉应变ε < εsh时,桥墩构件轻微破坏,不需修复,基本能运行,即轻微损伤。参照Kowalsky等(2000)、刘艳辉等(2010)、漆启明等(2020)建议,当耗能钢筋拉应变ε < 0.6εsu时,桥墩构件中等破坏,花费合理的费用可修复,即可恢复损伤/生命安全。参照刘艳辉等(2010)、魏标(2010)、Muntasir Billah等(2015b)建议,当耗能钢筋拉应变ε < εsu时,桥墩构件严重破坏但不倒塌,即严重损伤/防止倒塌。当耗能钢筋拉应变ε > εsu时,桥墩构件倒塌,功能完全丧失,即局部失效/倒塌。此外,预应力钢绞线达到屈服状态(εp = εpy = 0.0086)也是预制节段拼装桥墩严重损伤/防止倒塌的限值(李宁等,2020),而预应力钢绞线的其他应变状态不作为其性能水准判定的限值。此外,基于日本桥梁抗震设计规程《Design specifications specifications for highway bridges: part Ⅴ: seismic design》(Japan Road Association,2002)的建议,当残余位移角θR超过1.00%时,震后桥墩的修复时间与修复成本都将大大增加;当残余位移角θR超过1.75%时,震后桥墩将难以进行修复,需要推倒重建。因此,本文选择θR = 1.00%作为可恢复损伤的限值,选择θR = 1.75%作为严重损伤的限值,该自复位预制节段拼装CFDST桥墩抗震性能水准指标取值范围如表5所示。

    表 5  自复位预制节段拼装CFDST桥墩抗震性能水准指标取值范围
    Table 5.  Range of performance level indexes of self-centering precast segmental CFDST pier
    性能等级性能水准耗能钢筋拉应变ε钢绞线拉应变εpθdrθR
    基本完好$ < {\varepsilon _{\text{y}}}$/<1.00 %/
    轻微损伤$ < {\varepsilon _{{\text{sh}}}} = 0.015$/<2.25%<0.50%
    可恢复损伤/生命安全$ < 0.6{\varepsilon _{{\text{su}}}} = 0.06$/<5.50%<1.00%
    严重损伤/防止倒塌$ < {\varepsilon _{{\text{su}}}} = 0.10$$ < {\varepsilon _{{\text{py}}}} = 0.0086$<8.50%<1.75%
    局部失效/倒塌$ > {\varepsilon _{{\text{su}}}} = 0.10$$ > {\varepsilon _{{\text{py}}}} = 0.0086$>8.50%>1.75%
    下载: 导出CSV 
    | 显示表格

    利用已验证的有限元模型,对自复位桥墩进行增量动力分析,分别采用表2表4选定的60条地震动进行加载,每条地震动按0.1 g的调幅程度加载,峰值加速度加载至1.5 g结束。通过该桥墩的非线性时程分析,记录各个工况下墩顶相对最大水平位移角和残余位移角,得到峰值加速度-最大水平位移角、峰值加速度-残余位移角的900个样本。利用IDA得到不同峰值加速度激励下自复位桥墩的水平位移角和残余位移角,建立自复位桥墩基于水平位移角和残余位移角的概率地震需求模型。自复位桥墩地震需求(Dd)与地震动参数(IM)满足公式(4)(赵建锋等,2018):

    $$ \mathit{D} _{ \mathrm{d}} \mathrm= \mathit{a(I} _{ \mathrm{M}} \mathit{)} ^{ \mathit{b} } $$ (4)

    上式可化为:

    $$ \mathrm{ln(} \mathit{D} _{ \mathrm{d}} \mathrm{)=ln(} \mathit{a} \mathrm{)+} \mathit{b} \mathrm{ln(} \mathit{I} _{ \mathrm{M}} \mathrm{)=} \mathit{A} \mathrm+ \mathit{B} \mathrm{ln(} \mathit{I} _{ \mathrm{M}} \mathrm{)} $$ (5)

    式中,abAB为回归系数。

    对IDA分析得到的数据进行回归分析,分别建立预制节段拼装CFDST桥墩关于最大水平位移角和残余位移角的概率地震需求模型,如图5图6所示。从图中可以看出,墩顶最大水平位移角和残余位移角的自然对数与PGA的自然对数之间存在线性相关性(R² > 0.65),拟合后其表达式如表6所示。对比不同地震动作用下同一桥墩对相同损伤指标的概率需求模型,发现存在显著差异,特别是近场脉冲型地震。

    图 5  基于最大水平位移角的地震概率需求模型
    Figure 5.  Earthquake probability demand model base on maximum horizontal displacement angle
    图 6  基于残余位移角的地震概率需求模型
    Figure 6.  Earthquake probability demand model base on residual displacement angle
    表 6  桥墩概率地震需求模型
    Table 6.  Probabilistic earthquake demand model of pier
    性能指标 近场无脉冲地震 近场脉冲地震动 远场地震动
    墩顶最大水平位移角 ln(θdr) = 1.1468 ln(PGA)−3.8139 ln(θdr) = 1.21112 ln(PGA) −2.3137 ln(θdr) = 0.8328 ln(PGA) −2.8025
    墩顶残余位移角 ln(θR) = 1.7973 ln(PGA) −4.8048 ln(θR) = 1.8553 ln(PGA) −4.9436 ln(θR) = 1.4748 ln(PGA) −5.9554
    下载: 导出CSV 
    | 显示表格

    结构或构件的地震需求超过某特定性能指标的条件概率可以通过易损性曲线来评估(刘黎明等,2021任文静等,2024)。假设构件的地震需求D和结构抗震能力C呈对数正态分布,使用概率方程估算特定构件达到或超过特定损坏状态的概率。本文的地震动参数采用峰值地面运动加速度( Peak Ground Acceleration, PGA),则该自复位预制节段拼装CFDST桥墩的失效概率可表示为 :

    $$ P[D\geqslant C/I_{\mathrm{M}}]=\varphi\left[\frac{\ln(S_{\mathrm{d}})-\ln(S_{\mathrm{c}})}{\sqrt{\beta_{\mathrm{d}}^2+\beta_{\mathrm{c}}^2}}\right] $$ (6)

    式中,$ P $表示该自复位预制节段拼装CFDST桥墩的失效概率;$ {S_{\mathrm{d}}} $表示该自复位预制节段拼装CFDST桥墩结构地震需求的对数均值;$ {S_{\mathrm{c}}} $表示该自复位预制节段拼装CFDST桥墩结构抗力的对数均值;$ \beta _{\mathrm{d}}^{} $表示自复位预制节段拼装CFDST桥墩地震需求的对数标准差; $ \beta _{\mathrm{c}}^{} $表示自复位预制节段拼装CFDST桥墩结构抗力对数标准差。针对近场无脉冲地震动、近场脉冲地震动和远场地震动,将损伤概率定为y轴,而将地震动加速度峰值(PGA)定为x轴。将拟合的概率地震需求模型代入公式(6),可得到基于最大墩顶水平位移角的预制节段拼装CFDST桥墩易损性曲线(图7)和基于墩顶残余位移角的预制节段拼装CFDST桥墩易损性曲线(图8)。由图7图8可知,预制节段拼装CFDST桥墩在不同损伤状态下的超越概率与PGA呈正相关。随着峰值地面运动加速度的渐增,各种损伤状态的超越概率也相继提高。当PGA为0.6 g时,预制节段拼装CFDST桥墩发生完全损伤的概率均低于10%,表明该桥墩具有较高的安全性。

    图 7  基于最大墩顶水平位移角指标的易损性曲线
    Figure 7.  Vulnerability curve based on the maximum horizontal displacement angle of pier top
    图 8  基于墩顶残余位移角指标的易损性曲线
    Figure 8.  Vulnerability curve based on the residual displacement angle of pier top

    图9图11分别为近场无脉冲地震动、近场脉冲地震动、远场地震动作用的自复位预制节段拼装CFDST桥墩在最大水平位移角和残余位移角2种损伤指标下的易损性曲线。通过对比可以发现,在不同损伤状态下,不同地震动激励下自复位预制节段拼装CFDST桥墩的易损性曲线存在明显差异。以该桥墩发生轻微损伤状态为例,在近场无脉冲地震动激励下(PGA = 0.6 g),基于最大位移角指标的易损性曲线超越概率为76%, 而基于残余位移角指标得到的易损性曲线超越概率为41%;近场脉冲地震动激励下(PGA = 0.6 g),基于最大位移角指标得到的易损性曲线超越概率为98%,基于残余位移角指标得到的易损性曲线超越概率为58%;远场地震动激励下(PGA = 0.6 g),基于最大位移角指标得到的易损性曲线超越概率为71%, 基于残余位移角指标得到的易损性曲线超越概率为30%。基于残余位移角指标得到的各损伤状态下的自复位桥墩易损性曲线均被基于最大水平位移角指标得到的易损性曲线所“覆盖”, 也就是说基于最大水平位移角指标得到自复位预制节段拼装CFDST桥墩的损伤概率较大,其原因在于最大水平位移角指标只将墩顶位移角作为自复位桥墩损伤破坏的判断准则,忽略了预制节段拼装CFDST桥墩的塑性变形和耗能能力,导致其易损性破坏概率超过了实际损伤发生的概率,特别是在严重损伤/防止倒塌状态下,这种情况更为显著。因此,本文建议对于自复位预制节段拼装CFDST桥墩采用最大水平位移角作为单一损伤指标进行地震易损性分析。

    图 9  近场无脉冲地震动作用下基于不同损伤指标的易损性曲线
    Figure 9.  Vulnerability curves based on different damage indexes under near-field non-pulse-like ground motion
    图 10  近场脉冲地震动作用下基于不同损伤指标的易损性曲线
    Figure 10.  Vulnerability curves based on different damage indexes under near-field pulse-like ground motion
    图 11  远场地震动作用下基于不同损伤指标的易损性曲线
    Figure 11.  Vulnerability curves based on different damage indexes under far-field ground motion

    图12为不同类型地震动激励下自复位预制节段拼装CFDST桥墩关于最大水平位移角的易损性曲线,由图可知,地震动类型对该自复位预制节段拼装CFDST桥墩易损性曲线具有显著影响。在近场无脉冲和近场脉冲地震动作用下,自复位预制节段拼装CFDST桥墩基本完好的概率相近,且均高于远场地震动作用下的概率;而在近场脉冲地震动作用下,自复位预制节段拼装CFDST桥墩发生轻微损伤、可恢复损伤/生命安全、严重损伤/防止倒塌的概率最大,其次是近场无脉冲地震动作用下,远场地震动作用下的概率最低。随着结构损伤程度的增加,近场脉冲地震动对自复位预制节段拼装CFDST桥墩的破坏作用逐渐凸显,当峰值地面运动加速度 为 0.9 g 时,在远场、近场无脉冲和近场脉冲地震动作用下,自复位预制节段拼装CFDST桥墩发生轻微损伤的概率分别为94.8%、95.1%、99.9%;而自复位预制节段拼装CFDST桥墩发生严重损伤/防止倒塌的概率则分别为4.5%、9.9%和 44.7%,最大概率值(近场脉冲地震动作用下)是最小概率值(远场地震动作用下)的9.9倍。

    图 12  基于最大水平位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线
    Figure 12.  Self-centering precast segmental CFDST pier vulnerability curves based on the maximum horizontal displacement angle under earthquake ground motions

    图13为自复位预制节段拼装CFDST桥墩在不同类型地震动作用下,关于残余位移角的易损性曲线对比,可以看出,地震动类型对该桥墩基于残余位移角的易损性曲线同样具有显著影响。在近场脉冲地震动作用下,自复位预制节段拼装CFDST桥墩发生基本完好、轻微损伤、可恢复损伤/生命安全、严重损伤/防止倒塌的概率最大,其次是近场无脉冲地震动作用下,远场地震动作用下的概率最低。

    图 13  基于残余位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线
    Figure 13.  Self-centering precast segmental CFDST pier vulnerability curves based on the residual displacement angle under earthquake ground motions

    本文基于自复位预制节段拼装CFDST桥墩拟静力试验,选用OpenSees建立了自复位预制节段拼装CFDST桥墩有限元模型,对3种不同类型地震动(远场、近场无脉冲地震动和近场脉冲地震动)激励的桥墩开展增量动力分析,提出了自复位预制节段拼装CFDST桥墩的地震易损性评估方法,将墩顶最大水平位移角和残余位移角作为其易损性评估的主要指标,确定了基本完好、轻微损伤、可恢复损伤/生命安全、严重损伤/防止倒塌不同状态的量化指标,建立了不同类型地震动下自复位预制节段拼装CFDST桥墩的概率地震需求模型,探讨了不同地震动类型对该桥墩易损性的影响,得出以下结论:

    (1)在不同类型地震动作用下,自复位预制节段拼装CFDST桥墩关于同一损伤指标的概率地震需求模型存在显著差异。

    (2)针对自复位预制节段拼装CFDST桥墩进行地震易损性分析时,将最大水平位移角作为单一损伤指标是可行且安全的。

    (3)近场脉冲型地震动对该自复位预制节段拼装CFDST桥墩的地震响应具有显著影响。当PGA为0.9 g时,远场、近场无脉冲地震动和近场脉冲地震动作用下,该自复位预制节段拼装CFDST桥墩发生严重损伤/防止倒塌的概率分别为4.5%、9.9%和44.7%。

  • 图  1  自复位预制节段拼装CFDST桥墩构造示意图

    Figure  1.  Diagram of self-centering precast segmental assembled CFDST pier

    图  2  试件截面尺寸(单位:毫米)

    Figure  2.  Cross-sectional dimension of specimen (Unit: mm)

    图  3  自复位预制节段拼装CFDST桥墩数值模型

    Figure  3.  Numerical model of self-centering precast segmental assembled CFDST pier

    图  4  滞回曲线(Li等,2023b

    Figure  4.  Hysteretic curve of self-centering precast segmental assembled CFDST piers (Li et al., 2023b

    图  5  基于最大水平位移角的地震概率需求模型

    Figure  5.  Earthquake probability demand model base on maximum horizontal displacement angle

    图  6  基于残余位移角的地震概率需求模型

    Figure  6.  Earthquake probability demand model base on residual displacement angle

    图  7  基于最大墩顶水平位移角指标的易损性曲线

    Figure  7.  Vulnerability curve based on the maximum horizontal displacement angle of pier top

    图  8  基于墩顶残余位移角指标的易损性曲线

    Figure  8.  Vulnerability curve based on the residual displacement angle of pier top

    图  9  近场无脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  9.  Vulnerability curves based on different damage indexes under near-field non-pulse-like ground motion

    图  10  近场脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  10.  Vulnerability curves based on different damage indexes under near-field pulse-like ground motion

    图  11  远场地震动作用下基于不同损伤指标的易损性曲线

    Figure  11.  Vulnerability curves based on different damage indexes under far-field ground motion

    图  12  基于最大水平位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  12.  Self-centering precast segmental CFDST pier vulnerability curves based on the maximum horizontal displacement angle under earthquake ground motions

    图  13  基于残余位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  13.  Self-centering precast segmental CFDST pier vulnerability curves based on the residual displacement angle under earthquake ground motions

    表  1  关键性能指标

    Table  1.   Critical performance indexes

    屈服位移/mm 屈服荷载/kN 峰值荷载/kN 弹性刚度/(kN·mm−1) 峰值残余位移/mm
    试验 17.8 208 319 11.7 30.0
    模拟 18.0 216 308 12.0 31.8
    相对误差 1.1% 3.8% 3.4% 2.6% 6.0%
    下载: 导出CSV

    表  2  远场地震动记录

    Table  2.   Far-field ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Northwest Calif-01" 1938 "Ferndale City Hall" 5.5 53.58 11.6
    2 "Northwest Calif-02" 1941 "Ferndale City Hall" 6.6 91.22 22.2
    3 "Northern Calif-01" 1941 "Ferndale City Hall" 6.4 44.68 15.5
    4 "Borrego" 1942 "El Centro Array #9" 6.5 56.88 37.2
    5 "Northwest Calif-03" 1951 "Ferndale City Hall" 5.8 53.77 15.4
    6 "Kern County" 1952 "LA - Hollywood Stor FF" 7.36 117.75 33.5
    7 "Kern County" 1952 "Pasadena - CIT Athenaeum" 7.36 125.59 29.5
    8 "Kern County" 1952 "Santa Barbara Courthouse" 7.36 82.19 33.6
    9 "Kern County" 1952 "Taft Lincoln School" 7.36 38.89 30.3
    10 "Northern Calif-02" 1952 "Ferndale City Hall" 5.2 43.28 18.4
    11 "Northern Calif-03" 1954 "Ferndale City Hall" 6.5 27.02 19.4
    12 "El Alamo" 1956 "El Centro Array #9" 6.8 121.7 40.9
    13 "Northern Calif-04" 1960 "Ferndale City Hall" 5.7 57.21 28.4
    14 "Northern Calif-05" 1967 "Ferndale City Hall" 5.6 28.73 22.1
    15 "Borrego Mtn" 1968 "El Centro Array #9" 6.63 45.66 49.3
    16 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 129.11 28
    17 "San Fernando" 1971 "2516 Via Tejon PV" 6.61 55.2 54.2
    18 "San Fernando" 1971 "Carbon Canyon Dam" 6.61 61.79 18.9
    19 "San Fernando" 1971 "Castaic-Old Ridge Route" 6.61 22.63 16.8
    20 "San Fernando" 1971 "Fairmont Dam" 6.61 30.19 14.4
    下载: 导出CSV

    表  3  近场无脉冲型地震动

    Table  3.   Near-field non-pulse-like ground motion

    编号地震名称年份站台名称震级/级Rrup /kmT90%/s
    1"Imperial Valley-02"1935"El Centro Array #9"6.956.0924.2
    2"Hollister-02"1961"Hollister City Hall"5.518.0816.5
    3"Parkfield"1966"Cholame - Shandon Array #12"6.1917.6429
    4"Parkfield"1966"Cholame - Shandon Array #5"6.199.587.5
    5"Parkfield"1966"Cholame - Shandon Array #8"6.1912.913.1
    6"Managua_Nicaragua-01"1972"Managua_ ESSO"5.244.0610.6
    7"Hollister-03"1974"Hollister City Hall"5.179.3910.9
    8"Coyote Lake"1979"Coyote Lake Dam - Southwest Abutment"5.746.138.5
    9"Imperial Valley-06"1979"Calexico Fire Station"6.5310.4514.8
    10"Imperial Valley-06"1979"Cerro Prieto"6.5315.1936.4
    11"Imperial Valley-06"1979"Chihuahua"6.537.2924
    12"Imperial Valley-06"1979"Parachute Test Site"6.5312.6918.6
    13"Imperial Valley-07"1979"El Centro Array #5"5.0111.237
    14"Imperial Valley-07"1979"El Centro Array #6"5.0110.376.5
    15"Mammoth Lakes-02"1980"Mammoth Lakes H. S."5.699.123.9
    16"Mammoth Lakes-03"1980"Convict Creek"5.9112.436.3
    17"Mammoth Lakes-03"1980"Long Valley Dam (Downst)"5.9118.1312.4
    18"Mammoth Lakes-03"1980"Long Valley Dam (Upr L Abut)"5.9118.138.4
    19"Mammoth Lakes-061980"Fish & Game (FIS)"5.9412.935.1
    20"Westmorland"1981"Salton Sea Wildlife Refuge"5.97.839.1
    下载: 导出CSV

    表  4  近场脉冲型地震动

    Table  4.   Near-field pulse-like ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    2 "Coyote Lake" 1979 "Gilroy Array #3" 5.74 7.42 8.7
    3 "Coyote Lake" 1979 "Gilroy Array #4" 5.74 5.7 11
    4 "Imperial Valley-06" 1979 "Agrarias" 6.53 0.65 13.3
    5 "Imperial Valley-06" 1979 "Brawley Airport" 6.53 10.42 14.9
    6 "Imperial Valley-06" 1979 "EC County Center FF" 6.53 7.31 13.2
    7 "Imperial Valley-06" 1979 "El Centro Array #10" 6.53 8.6 12.8
    8 "Imperial Valley-06" 1979 "El Centro Array #3" 6.53 12.85 14.1
    9 "Imperial Valley-06" 1979 "Holtville Post Office" 6.53 7.5 12.8
    10 "Irpinia_ Italy-01" 1980 "Bagnoli Irpinio" 6.9 8.18 19.6
    11 "Irpinia_ Italy-01" 1980 "Sturno (STN)" 6.9 10.84 15.2
    12 "Westmorland" 1981 "Parachute Test Site" 5.9 16.66 18.7
    13 "Morgan Hill" 1984 "Gilroy Array #6" 6.19 9.87 7.3
    14 "Kalamata_ Greece-02" 1986 "Kalamata (bsmt) (2 nd trigger)" 5.4 5.6 2.9
    15 "Superstition Hills-02" 1987 "Kornbloom Road (temp)" 6.54 18.48 13.9
    16 "Loma Prieta" 1989 "Gilroy - Historic Bldg." 6.93 10.97 13.1
    17 "Loma Prieta" 1989 "Saratoga - W Valley Coll." 6.93 9.31 11.1
    18 "Kocaeli_ Turkey" 1999 "Arcelik" 7.51 13.49 11.1
    19 "Kocaeli_ Turkey" 1999 "Gebze" 7.51 10.92 8.2
    20 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    下载: 导出CSV

    表  5  自复位预制节段拼装CFDST桥墩抗震性能水准指标取值范围

    Table  5.   Range of performance level indexes of self-centering precast segmental CFDST pier

    性能等级性能水准耗能钢筋拉应变ε钢绞线拉应变εpθdrθR
    基本完好$ < {\varepsilon _{\text{y}}}$/<1.00 %/
    轻微损伤$ < {\varepsilon _{{\text{sh}}}} = 0.015$/<2.25%<0.50%
    可恢复损伤/生命安全$ < 0.6{\varepsilon _{{\text{su}}}} = 0.06$/<5.50%<1.00%
    严重损伤/防止倒塌$ < {\varepsilon _{{\text{su}}}} = 0.10$$ < {\varepsilon _{{\text{py}}}} = 0.0086$<8.50%<1.75%
    局部失效/倒塌$ > {\varepsilon _{{\text{su}}}} = 0.10$$ > {\varepsilon _{{\text{py}}}} = 0.0086$>8.50%>1.75%
    下载: 导出CSV

    表  6  桥墩概率地震需求模型

    Table  6.   Probabilistic earthquake demand model of pier

    性能指标 近场无脉冲地震 近场脉冲地震动 远场地震动
    墩顶最大水平位移角 ln(θdr) = 1.1468 ln(PGA)−3.8139 ln(θdr) = 1.21112 ln(PGA) −2.3137 ln(θdr) = 0.8328 ln(PGA) −2.8025
    墩顶残余位移角 ln(θR) = 1.7973 ln(PGA) −4.8048 ln(θR) = 1.8553 ln(PGA) −4.9436 ln(θR) = 1.4748 ln(PGA) −5.9554
    下载: 导出CSV
  • 董慧慧,李辉,杜修力,2023. 近场脉冲型地震动横向激励下附加SCEB双柱式桥墩结构易损性分析. 北京工业大学学报,49(5):532−546. doi: 10.11936/bjutxb2021110002

    Dong H. H., Li H., Du X. L., 2023. Fragility analysis of the double-column bent with the SCEB under near-field pulse-like ground motions in transverse direction. Journal of Beijing University of Technology, 49(5): 532−546. (in Chinese) doi: 10.11936/bjutxb2021110002
    葛继平,王志强,2011. 干接缝节段拼装桥墩振动台试验研究. 工程力学,28(9):122−128.

    Ge J. P., Wang Z. Q., 2011. Shake table tests of segmental bridge columns with match-cast dry joints. Engineering Mechanics, 28(9): 122−128. (in Chinese)
    何益斌,李毅,郭健等,2012. 中空夹层钢管混凝土柱与钢-混凝土组合梁节点抗震性能试验研究. 建筑结构学报,33(7):106−115.

    He Y. B., Li Y., Guo J., et al., 2012. Experimental study on seismic behavior of concrete-filled double skin steel tubular column and steel-concrete beam composite joints. Journal of Building Structures, 33(7): 106−115. (in Chinese)
    胡晓斌,贺慧高,2015. 强震下单自由度体系残余位移离散性研究. 地震工程与工程振动,35(6):213−218.

    Hu X. B., He H. G., 2015. Study on the dispersion of residual displacement of SDOF system under strong earthquake. Earthquake Engineering and Engineering Dynamics, 35(6): 213−218. (in Chinese)
    胡志坚,闫明辉,周知等,2022. 预制拼装桥墩地震易损性分析. 土木工程学报,55(1):89−99,108.

    Hu Z. J., Yan M. H., Zhou Z., et al., 2022. Seismic vulnerability analysis of precast segmental bridge piers. China Civil Engineering Journal, 55(1): 89−99,108. (in Chinese)
    贾晗曦,林均岐,刘金龙,2019. 建筑结构地震易损性分析研究综述. 震灾防御技术,14(1):42−51. doi: 10.11899/zzfy20190105

    Jia H. X., Lin J. Q., Liu J. L., 2019. Review of seismic fragility analysis of building structure. Technology for Earthquake Disaster Prevention, 14(1): 42−51. (in Chinese) doi: 10.11899/zzfy20190105
    贾俊峰,赵建瑜,张强等,2017. 后张预应力节段拼装CFST桥墩抗侧力学行为试验. 中国公路学报,30(3):236−245. doi: 10.3969/j.issn.1001-7372.2017.03.026

    Jia J. F., Zhao J. Y., Zhang Q., et al., 2017. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns. China Journal of Highway and Transport, 30(3): 236−245. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.026
    蒋欢军,王斌,吕西林,2010. 钢筋混凝土梁和柱性能界限状态及其变形限值. 建筑结构,40(1):10−14.

    Jiang H. J., Wang B., Lü X. L., 2010. Performance limit states and deformation limits of RC beams and columns. Building Structure, 40(1): 10−14. (in Chinese)
    李宁,张双城,李忠献等,2020. 预制拼装钢管混凝土自复位桥墩变形分析模型及验证. 工程力学,37(4):135−143.

    Li N., Zhang S. C., Li Z. X., et al., 2020. Deformation analysis model and validation for precast segmental concrete filed steel tube self-centering bridge column. Engineering Mechanics, 37(4): 135−143. (in Chinese)
    林上顺,厉良勇,叶世集等,2024. 采用混合连接装配式桥墩地震易损性分析. 地震工程学报,46(2):251−258,268.

    Lin S. S., Li L. Y., Ye S. J., et al., 2024. Seismic vulnerability analysis of assembled piers with a hybrid connection. China Earthquake Engineering Journal, 46(2): 251−258,268. (in Chinese)
    刘黎明,徐超,卜春尧等,2021. 双向水平地震动作用对某钢筋混凝土连续梁桥易损性的影响. 震灾防御技术,16(4):671−679. doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008

    Liu L. M., Xu C., Bu C. Y., et al., 2021. Influence of Bi-directional horizontal ground motion on the vulnerability of a reinforced concrete continuous beam bridge. Technology for Earthquake Disaster Prevention, 16(4): 671−679. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008
    刘艳辉,赵世春,强士中,2010. 城市高架桥抗震性能水准的量化. 西南交通大学学报,45(1):54−58,64. doi: 10.3969/j.issn.0258-2724.2010.01.009

    Liu Y. H., Zhao S. C., Qiang S. Z., 2010. Quantification of seismic performance levels for urban viaduct. Journal of Southwest Jiaotong University, 45(1): 54−58,64. (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.01.009
    罗征,李建中,2013. 低周往复荷载下空心矩形墩抗震性能试验研究. 振动与冲击,32(8):183−188.

    Luo Z., Li J. Z., 2013. Tests for a seismic performance of rectangular hollow thin-walled bridge columns under low-cycle reversed loading. Journal of Vibration and Shock, 32(8): 183−188. (in Chinese)
    漆启明,邵长江,胡晨旭等,2020. 空心墩地震损伤评估及性能水准量化研究. 土木工程学报,53(11):116−128.

    Qi Q. M., Shao C. J., Hu C. X., et al., 2020. Study on seismic damage assessment and performance level quantification of hollow pier. China Civil Engineering Journal, 53(11): 116−128. (in Chinese)
    任文静,邱大鹏,张智等,2024. 考虑构件地震相关性的近海桥梁二维地震易损性分析. 震灾防御技术,19(1):96−107. doi: 10.11899/zzfy20240110

    Ren W. J., Qiu D. P., Zhang Z., et al., 2024. The two-dimensional seismic fragility analysis of the offshore bridge in considering the seismic correlation between different components. Technology for Earthquake Disaster Prevention, 19(1): 96−107. (in Chinese) doi: 10.11899/zzfy20240110
    石岩,张智超,李军等,2022. 考虑内力状态的大跨高墩连续刚构桥地震易损性分析. 地震研究,45(1):8−16.

    Shi Y., Zhang Z. C., Li J., et al., 2022. Seismic fragility of the long-span, continuous, rigid-frame bridge with high-rise pier involving the state of the internal force. Journal of Seismological Research, 45(1): 8−16. (in Chinese)
    司炳君,谷明洋,孙治国等,2017. 近断层地震动下摇摆-自复位桥墩地震反应分析. 工程力学,34(10):87−97. doi: 10.6052/j.issn.1000-4750.2016.05.0386

    Si B. J., Gu M. Y., Sun Z. G., et al., 2017. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions. Engineering Mechanics, 34(10): 87−97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0386
    孙治国,赵泰儀,石岩等. 2019. 摇摆-自复位桥墩抗震性能数值建模方法研究. 应用基础与工程科学学报, 27 (6):1357−1369.

    Sun Z. G., Zhao T. Y., Shi Y., et al., 2019. Research on numerical modeling method for rocking self-centering bridge piers. Journal of Basic Science and Engineering, 27 (6): 1357−1369. (in Chinese)
    王军文,李海洋,闫聚考等,2018. 地震作用下钢筋混凝土桥墩残余位移研究. 振动与冲击,37(13):130−134.

    Wang J. W., Li H. Y., Yan J. K., et al., 2018. Residual displacements of RC piers under action of earthquake. Journal of Vibration and Shock, 37(13): 130−134. (in Chinese)
    王震,2018. 自复位预制拼装UHPC空心墩抗震性能及设计方法研究. 南京:东南大学.

    Wang Z., 2018. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers. Nanjing:Southeast University. (in Chinese)
    魏标,2010. 典型非规则梁桥抗震设计理论. 上海:同济大学.

    Wei B., 2010. Seismic design theory of typical irregular continuous bridges. Shanghai:Tongji University. (in Chinese)
    许成祥,罗恒,王粘锦,2022. 双层高架桥框架式桥墩地震易损性分析. 重庆交通大学学报(自然科学版),41(8):95−101. doi: 10.3969/j.issn.1674-0696.2022.08.14

    Xu C. X., Luo H., Wang Z. J., 2022. Seismic fragility analysis of double-deck Viaducts’ Frame piers. Journal of Chongqing Jiaotong University (Natural Science), 41(8): 95−101. (in Chinese) doi: 10.3969/j.issn.1674-0696.2022.08.14
    曾武华,卓卫东,王东升,2021. RC桥墩残余位移指标影响因素分析及贝叶斯估计. 振动与冲击,40(19):145−150.

    Zeng W. H., Zhuo W. D., Wang D. S., 2021. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier. Journal of Vibration and Shock, 40(19): 145−150. (in Chinese)
    张勤,贡金鑫,周继凯,2017. 基于概率的单自由度体系震后残余变形计算. 建筑结构学报,38(8):74−82.

    Zhang Q., Gong J. X., Zhou J. K., 2017. Seismic residual deformation analysis of single degree of freedom system based on probability. Journal of Building Structures, 38(8): 74−82. (in Chinese)
    张云,谭平,郑建勋等,2014. 基于性能的中小跨径装配式梁桥地震易损性分析. 振动工程学报,27(5):676−684. doi: 10.3969/j.issn.1004-4523.2014.05.005

    Zhang Y., Tan P., Zheng J. X., et al., 2014. Fragility analysis for performance-based seismic design of prefabricated bridge with middle-small span. Journal of Vibration Engineering, 27(5): 676−684. (in Chinese) doi: 10.3969/j.issn.1004-4523.2014.05.005
    赵建锋,孙伟帅,李刚,2018. 不同轴压比钢筋混凝土圆柱桥墩地震易损性分析. 世界地震工程,34(4):31−37.

    Zhao J. F., Sun W. S., Li G., 2018. Seismic vulnerability analysis of cylindrical RC bridge piers with different axial compression ratios. World Earthquake Engineering, 34(4): 31−37. (in Chinese)
    周雨龙,韩强,张劲泉等,2021. 消能自复位摇摆框架墩结构地震反应及易损性分析. 中国公路学报,34(11):153−164. doi: 10.3969/j.issn.1001-7372.2021.11.013

    Zhou Y. L., Han Q., Zhang J. Q., et al., 2021. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers. China Journal of Highway and Transport, 34(11): 153−164. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.013
    Ahmadi E., Kocakaplan S., Kashani M. M., 2022. Nonlinear seismic fragility analysis of a resilient precast post-tensioned segmental bridge pier. Sustainable and Resilient Infrastructure, 7(6): 823−841. doi: 10.1080/23789689.2022.2082644
    Christopoulos C., Pampanin S., Priestley M. J. N., 2003. Performance-based seismic response of frame structures including residual deformations. Part I: single-degree of freedom systems. Journal of Earthquake Engineering, 7(1): 97−118.
    Dawood H., Elgawady M., Hewes J., 2014. Factors affecting the seismic behavior of segmental precast bridge columns. Frontiers of Structural and Civil Engineering, 8(4): 388−398. doi: 10.1007/s11709-014-0264-8
    Filippou F. C., Popov E. P., Bertero V. V., 1983. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Berkeley: Earthquake Engineering Research Center, University of California.
    Hewes J. T., Priestley M. J. N., 2002. Seismic design and performance of precast concrete segmental bridge columns. San Diego: University of California.
    Hose Y., Silva P., Seible F., 2000. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads. Earthquake Spectra, 16(2): 413−442. doi: 10.1193/1.1586119
    Japan Road Association, 2002. Design specifications for highway bridges: part v: seismic design. Japan: Maruzen Publishing Co, Ltd.
    Kawashima K., MacRae G. A., Hoshikuma J. I., et al., 1998. Residual displacement response spectrum. Journal of Structural Engineering, 124(5): 523−530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
    Kent D. C., Park R., 1971. Flexural members with confined concrete. Journal of the Structural Division, 97(7): 1969−1990. doi: 10.1061/JSDEAG.0002957
    Kowalsky M. J., 2000. Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering, 126(8): 869−878. doi: 10.1061/(ASCE)0733-9445(2000)126:8(869)
    Li Y. X., Li J. Z., Shen Y., 2021. Quasi-static and nonlinear time-history analyses of post-tensioned bridge rocking piers with internal ED bars. Structures, 32: 1455−1468. doi: 10.1016/j.istruc.2021.03.099
    Li Z. X., Du C. Y., Liang X., et al., 2023a. Experimental and numerical investigation on hysteretic behavior of posttensioned precast segmental Concrete-filled double skin steel tubular piers. Structures, 54: 1772−1787. doi: 10.1016/j.istruc.2023.05.128
    Li Z. X., Du C. Y., Liu D., et al., 2023b. Comparative study on seismic performance of concrete-filled double skin tubular piers and hollow concrete piers: experimental and analytical. Structures, 49: 1078−1092. doi: 10.1016/j.istruc.2022.11.116
    Luco N., Cornell C. A., 2000. Effects of connection fractures on SMRF seismic drift demands. Journal of Structural Engineering, 126(1): 127−136. doi: 10.1061/(ASCE)0733-9445(2000)126:1(127)
    Mander J. B., Priestley M. J. N., Park R., 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8): 1804−1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    Mander J. B., Cheng C. T., 1997. Seismic resistance of bridge piers based on damage avoidance design. Buffalo: National Center for Earthquake Engineering Research, State University of New York.
    Mazzoni S., McKenna F., Scott M. H., et al., 2009. Open system for earthquake engineering simulation user command-language manual. version 2.0. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
    Menegotto M., 1973. Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Proceedings of the IABSE Symposium on Resistance and Ultimate Deformablility of Structures Acted on by Well-Difined Repeated. 15−22.
    Muntasir Billah A. H. M., Shahria Alam M., 2015a. Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6): 804−832. doi: 10.1080/15732479.2014.912243
    Muntasir Billah A. H. M., Shahria Alam M., 2015b. Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy. Earthquake Spectra, 31(3): 1515−1541. doi: 10.1193/112512EQS337M
    Ou Y. C., Wang P. H., Tsai M. S., et al., 2010. Large-scale experimental study of Precast segmental unbonded posttensioned concrete bridge columns for seismic regions. Journal of Structural Engineering, 136(3): 255−264. doi: 10.1061/(ASCE)ST.1943-541X.0000110
    Zhang Y. Y., Li Y. H., Fan W., et al., 2022. Seismic damage and assessment model analysis of prestressed segmental bridge columns. Structures, 38: 797−807. doi: 10.1016/j.istruc.2022.02.018
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  65
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

/

返回文章
返回