Research on Reverse Time Migration of Different Phases from OBN Stations
-
摘要: 对近海海域进行地壳速度结构高精度成像有助于深入了解我国近海地震活动、深部孕震构造条件,揭示海域构造特征及其相互作用模式,为海域地震区划和风险评估提供基础支撑。在海底节点观测系统中,由于海底、海平面等强波阻抗差界面的存在,台站记录了较多强能量的后续震相。与初至震相相比,后续震相在地球内部来回反射,传播路径长、携带构造信息多,充分利用后续震相有望获得高精度的地下构造成像结果。逆时偏移是勘探地球物理中精度较高的成像方法之一,且易于实现。将逆时偏移算法引入海底节点初至震相和后续震相成像,采用常规逆时偏移对反射震相进行偏移,对上行一阶海底震相、上行一阶后续震相成像均进行镜像法逆时偏移,通过修改逆时偏移框架,实现初至震相的成像。研究结果表明,逆时偏移能够有效对反射震相进行地下偏移归位;采用镜像法逆时偏移对上行一阶海底震相、上行一阶自由表面震相进行成像,能够有效增大成像范围;修改逆时偏移框架,初至震相能够对断层进行准确定位。Abstract: High-precision imaging of the velocity structure of the crust in offshore sea concentrates to understanding of the seismic activity and deep seismogenic environments, revealing the tectonic features and their interaction patterns, and providing basic supports for seismic risk assessment. Due to the existence of interfaces with strong impedance differences such as the seafloor and the free surface, the ocean bottom nodes (OBN) monitoring station records many seismic later phases with strong energy. The later phases propagate back and forth in the Earth’s interior and therefore the later phases carry more structural information than the first arriving phases. Inversions using later phases can promote the generation of high-quality subsurface structural imaging results. Reverse time migration (RTM) is one of the high-precision and widely-used imaging methods in exploration geophysics and it is convenient to implement. In this paper, RTM algorithm is introduced into the imaging of the first and later arrival phases of the OBN stations: the conventional RTM is used to migrate the reflected phases; the up-going first-order sea-floor-related phases and the up-going first-order free-surface-related phases can be processed by mirror RTM; by modifying the framework of RTM, the imaging of the first arriving phases are realized. Numerical experiments demonstrate that RTM can effectively migrate the reflected phases, mirror RTM of the first-order later phases can effectively increase the image quality and enlarge the illumination ranges, and the modified RTM of first arriving phases can accurately locate faults.
-
Key words:
- Seismic later phases /
- Reverse time migration (RTM) /
- Ocean bottom nodes (OBN) /
- Imaging
-
引言
强震过后,桥梁残余位移如果较大,将不能继续使用或修复。因此,日本道路协会《桥梁抗震规范》(Japan Road Association,1996)规定进行桥梁抗震设计时,应考虑残余位移的影响。早在20世纪80年代,Mahin等(1981)开始关注结构震后的残余位移,并指出残余位移依赖于结构的恢复力模型。Kawashima等(1998)和MacRae等(1997)给出残余位移比的定义,并针对双线性非线性SDOF体系,计算相应的残余位移反应谱。Zatar等(2000)指出采用部分预应力混凝土结构替代全预应力混凝土结构或普通钢筋混凝土结构,可有效降低结构的残余位移。李芳宝等(2007)研究近场具有脉冲地层运动的双线性SDOF体系残余位移比谱。李宇(2010)也提出了考虑残余位移和土-结构相互作用的桥梁结构基于性能的抗震设计及评估方法。李平等(2017)分析软土残余应变的变化规律,并结合地区震陷经验系数,提出软土震陷简化计算方法。杜修力等(2018)研究地震动峰值位移和峰值速度对地下结构地震反应的影响。上述学者虽对残余位移谱进行研究,但所选取的地震动记录较少,所得研究结果并不具有统计意义。因此,本文选取大量强震记录作为输入,针对考虑刚度退化且具有不同周期的非线性单自由度SDOF(SDOF)体系,进行非线性时程分析,以研究地震动特性和恢复力模型参数对残余位移反应谱的影响。
1. 基本理论
当恢复力模型采用双线性恢复力模型时,屈服后刚度比η和位移延性比μ可分别定义为:
$$ \left\{ \begin{array}{l} \eta = {k_2}/{k_1}\\ \mu = {u_{\max }}/{u_y} \end{array} \right. $$ (1) 式中k1、k2分别为初始弹性刚度和屈服后刚度;uy、umax分别为屈服位移和最大位移。残余位移最大值dmax可表示为(Kawashima等,1998):
$$ \left\{ \begin{array}{l} {d_{\max }} = (\mu - 1)\; \cdot \;(1 - \eta){u_y}\;\;\;\;\;\;\;\;\;\eta (\mu - 1) < 1\\ {d_{\max }} = [{{(1 - \eta)} / \eta }]{u_y}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\eta (\mu - 1) \ge 1 \end{array} \right. $$ (2) 当恢复力模型采用Takeda双线性刚度退化模型时,可基于最大位移相等的条件(umax=μmuym= μuy),将Takeda模型转换为等效双线性恢复力模型,进而计算dmax(Kawashima等,1998)。
对于Takeda双线性刚度退化恢复力模型,存在以下参数关系:
$$ \left\{ \begin{array}{l} {k_{1{\rm{m}}}} = \frac{{{F_{y{\rm{m}}}}}}{{{u_{y{\rm{m}}}}}}\\ {k_{2{\rm{m}}}} = \frac{{{F_{\max }} - {F_{y{\rm{m}}}}}}{{{u_{\max }} - {u_{y{\rm{m}}}}}} = \frac{{{F_{u{\rm{m}}}} - {F_{y{\rm{m}}}}}}{{{u_{u{\rm{m}}}} - {u_{y{\rm{m}}}}}} \end{array} \right. $$ (3) 式中k1m、k2m为第一、第二刚度;Fym、Fum为屈服力和极限力;uym、uum为屈服位移和极限位移;ηm为屈服后刚度比。Takeda双线性刚度退化模型卸载刚度可表示为:
$$ \left\{ \begin{array}{l} k'_1 = {k_{1{\rm{m}}}}/\mu _{\rm{m}}^\alpha \\ k'_2 = \eta {k_1} \end{array} \right. $$ (4) 式中α为刚度退化系数,可取为0.5。则等效双线性恢复力模型屈服后刚度比ηx为:
$$ \left\{ \begin{array}{l} \eta ' = \frac{{{F_{\max }}}}{{2{\mu _{\rm{m}}}{u_{y{\rm{m}}}}k'_1 - {F_{\max }}}}\\ {F_{\max }} = {F_{y{\rm{m}}}}\left\{ {1 + {\eta _{\rm{m}}}\left({{\mu _{\rm{m}}} - 1} \right)} \right\} \end{array} \right. $$ (5) 等效双线性恢复力模型屈服位移uxy和延性系数μx可表示为:
$$ \left\{ \begin{array}{l} u'_y = \frac{{{F_{\max }}}}{{2k'_1}}\\ \mu ' = \frac{{{\mu _{\rm{m}}}{u_{y{\rm{m}}}}}}{{u'_y}} \end{array} \right. $$ (6) 将式(5)、(6)代入式(2)即可求得采用Takeda双线性刚度退化模型时的残余位移最大值dmax。在此基础上,可计算具有不同周期T和阻尼比ξ的非线性SDOF体系残余位移最大值dmax,进而得到周期与残余位移最大值dmax的关系曲线,即残余位移反应谱Dres。
2. 强震记录的选取
周锡元等(2001)对比了中美抗震规范的场地类型,如表 1所示。我国规范的Ⅰ类场地覆盖美国规范的A、B类和部分C类场地;我国规范的Ⅱ类场地介于美国规范的C、D类场地之间;我国规范的Ⅲ类场地介于美国规范的D、E类场地之间;我国规范的Ⅳ类场地和美国规范的E类场地接近。
表 1 抗震规范场地类别的对比Table 1. Table 1 Comparison of site conditions180m•s-1 360 m•s-1 760 m•s-1 1500 m•s- E D C B A 150 m•s-1 250 m•s-1 500m•s-1 Ⅳ Ⅲ Ⅱ Ⅰ 在此基础上,本文从PEER强震数据库中挑选320条地震动记录(Ⅰ—Ⅳ类场地各80条,如图 1所示)。通过320条地震动记录统计的放大系数曲线与规范值吻合较好(中华人民共和国铁道部,2006;中华人民共和国交通运输部,2008),即所选取的地震动记录符合要求,如图 2所示。
3. 地震动特性对残余位移反应谱的影响
将320条地震动记录的PGA调整一致后作为输入,采用Takeda刚度退化模型,取ξ=5%、η=0.05、μ=1—6,利用BISPEC(Mahmoud,2000)计算T=0.05—5s的非线性单自由度体系的残余位移的平均值,计算结果如图 3所示。
将320条地震动记录分为小震(震级为5.7—6.2,100条)、中震(震级为6.3—6.8,80条)和大震(震级为6.9—7.6,140条),由图 3(a)可知,当μ相同时,Dres的谱值随震级的增大而增大。这是因为震级越大,地震输入能量越大,非线性SDOF体系的残余位移相应地增加。
由图 3(b)可知,当场地土较硬(Ⅰ、Ⅱ类场地)时,场地类型对Dres的谱值的影响较小;当场地土较软(Ⅲ、Ⅳ类场地)时,Dres的谱值随土质的变软而增大。
由图 3(c)可知,Dres的谱值随PGA增加而增大。另外,若以7度Dres的谱值为准,其他设防烈度(6、8、9度)的Dres的谱值为7度Dres的谱值的0.523、1.810倍和3.047倍,这和6、8、9度的PGA与7度的PGA之比近似,即PGA6度/PGA7度=0.11g/0.21g=0.524,PGA8度/PGA7度=0.38g/0.21g=1.811,PGA9度/PGA7度=0.64g/0.21g=3.048。
4. 动力参数对残余位移反应谱的影响
以Ⅰ类场地为例,将80条地震动记录的PGA调幅为0.21g后作为输入,利用BISPEC(Mahmoud,2000)计算不同恢复力模型(双线性模型、Takeda模型)、不同屈服后刚度比(η=0.0、0.025、0.05)、不同阻尼比(ξ=2%、5%、10%、14%)、不同位移延性比(μ=1.0—5.0)等情况下非线性SDOF体系(T=0.05—5s)残余位移的平均值,计算结果如图 4所示。
由图 4(a)可知,Takeda模型Dres的谱值小于双线性模型,其差值随T的增加而加剧,在长周期处尤为明显。由图 4(b)可知,当μ较小时,η对Dres的谱值的影响可忽略;但当μ较大时,Dres的谱值随η的增加而减小。由图 4(c)可知,随着T的增加,不同ξ对应的Dres的谱值均呈递增趋势。而同一T对应的Dres的谱值则随ξ的增大而减小。可见,ξ的增大会使结构阻尼耗能增加,进而消耗地震能量,以减小结构的残余位移。由图 4(d)可知,随着T或μ的增大,Dres的谱值均呈递增趋势。但当μ > 3后,μ对残余位移的影响有所下降。
5. 4类场地残余位移反应谱的统计
将320条地震动记录的PGA调幅为0.21g(罕遇地震下7度设防)后作为输入,采用Takeda模型,取η=0.05、μ=1.25—6.0、ξ=5%,利用BISPEC(Mahmoud,2000)计算4类场地下非线性SDOF体系(T=0.05—5s)的残余位移的平均值(其他设防烈度的Dres可由PGA其他与PGA基准之比调整得到)。
由如图 5可知,4类场地的Dres的谱值均随着T或μ的增加而增大;Ⅱ类场地的Dres的谱值最小,其他场地Dres的谱值则随着场地类型的变软而增大。
6. 结语
本文通过选取大量地震动记录作为输入,对非线性SDOF体系的残余位移反应谱进行参数影响研究,得到如下结论:
(1)地震动特性对残余位移反应谱的影响
Dres的谱值随着震级和PGA的增大而增大;不同设防烈度的Dres可由PGA其他与PGA基准之比调整基准烈度的Dres得到。另外,场地土较硬时,场地类型对Dres的谱值的影响较小;场地土较软时,Dres的谱值随土质的变软而增大;Ⅱ类场地的Dres的谱值最小。
(2)动力参数对残余位移反应谱的影响
Takeda模型Dres的谱值小于双线性模型,其差值随T的增加而加剧,在长周期处尤为明显;当μ较小时,η对Dres的谱值的影响可忽略,但当μ较大时,Dres的谱值随η的增加而减小;ξ的增大会使结构阻尼耗能增加,进而消耗地震能量,以减小结构的残余位移;随着T或μ的增大,Dres的谱值均呈递增趋势,但当μ > 3后,μ对残余位移的影响有所下降。
-
图 1 反射震相
$ {P}_{{\rm{d}}}{P}_{{\rm{u}}} $ 、上行一阶海底震相$ {{P}_{{\rm{wu}}}P}_{{\rm{wd}}}{P}_{{\rm{u}}} $ 、上行一阶自由表面震相$ {{P}_{{\rm{u}}}P}_{{\rm{d}}}{P}_{{\rm{u}}} $ 射线路径及成像过程示意注:S表示震源点,S'表示以海底为镜像面而翻折的虚拟震源点,S''表示以海水面为镜像面而翻折的虚拟震源点,R表示OBN台站,X1、X2与X3分别表示反射震相、上行一阶海底震相与上行一阶自由表面震相逆时偏移成像点。
Figure 1. Illuminations of raypaths and imaging procedures of the seismic later phases
-
高战武, 缑亚森, 钟慧等, 2021. 中国东部海域断裂构造格架与地震活动研究. 震灾防御技术, 16(1): 11—18Gao Z. W. , Gou Y. S. , Zhong H. , et al. , 2021. Fault structure frame and seismicity in the sea on the EastSide of Chinese mainland. Technology for Earthquake Disaster Prevention, 16(1): 11—18. (in Chinese) 李小军, 李娜, 陈苏, 2021. 中国海域地震区划及关键问题研究. 震灾防御技术, 16(1): 1—10Li X. J. , Li N. , Chen S. , 2021. Study on seismic zoning in China sea area and its key issues. Technology for Earthquake Disaster Prevention, 16(1): 1—10. (in Chinese) 刘伊克, 刘学建, 张延保, 2018. 地震多次波成像. 地球物理学报, 61(3): 1025—1037Liu Y. K. , Liu X. J. , Zhang Y. B. , 2018. Migration of seismic multiple reflections. Chinese Journal of Geophysics, 61(3): 1025—1037. (in Chinese) 齐诚, 刘璐惜, 2008. 对后续震相的认识促进了地震层析成像的发展. 地学前缘, 15(1): 232—241Qi C. , Liu L. X. , 2008. Importance of later-phase data in seismic tomography. Earth Science Frontiers, 15(1): 232—241. (in Chinese) 夏少红, 丘学林, 徐辉龙等, 2011. 天然地震后续PmP震相走时特征及在地壳结构成像中的作用——以日本东北活火山地区为例. 中国科学: 地球科学, 41(2): 141—148.Xia S. H. , Qiu X. L. , Xu H. L. , et al. , 2011. Characteristics of PmP phases from earthquakes and their role in crustal tomography: An active volcanic area example, northeastern Japan. Science China Earth Sciences, 54(5): 640—646. 张延保, 2020. 基于逆时偏移地震多次波成像. 北京: 中国科学院大学. 郑忆康, 王一博, 徐嘉亮等, 2015. 数据自相关多次波偏移成像. 地球物理学报, 58(3): 993—1001Zheng Y. K. , Wang Y. B. , Xu J. L. , et al. , 2015. Imaging multiples by data to data migration. Chinese Journal of Geophysics, 58(3): 993—1001. (in Chinese) 郑忆康, 王一博, 常旭等, 2016. 单程波角度域内压制多次波偏移假象. 地球物理学报, 59(12): 4584—4593Zheng Y. K. , Wang Y. B. , Chang X. , et al. , 2016. Eliminating migration artifacts in angle domain based on one-way wave equation migration of multiples. Chinese Journal of Geophysics, 59(12): 4584—4593. (in Chinese) Alerini M. , Traub B. , Ravaut C. , et al. , 2009. Prestack depth imaging of ocean-bottom node data. Geophysics, 74(6): WCA57—WCA63. doi: 10.1190/1.3204767 Baysal E. , Kosloff D. D. , Sherwood J. W. C. , 1983. Reverse time migration. Geophysics, 48(11): 1514—1524. doi: 10.1190/1.1441434 Dash R. , Spence G. , Hyndman R. , et al. , 2009. Wide-area imaging from OBS multiples. Geophysics, 74(6): Q41—Q47. doi: 10.1190/1.3223623 Grion S. , Exley R. , Manin M. , et al. , 2007. Mirror imaging of OBS data. First Break, 25(11): 37—42. Huang X. Y. , Yang D. H. , Tong P. , et al. , 2016. Wave equation-based reflection tomography of the 1992 Landers earthquake area. Geophysical Research Letter, 43(5): 1884—1892. doi: 10.1002/2016GL067717 Katzman R. , Holbrook W. S. , Paull C. K. , 1994. Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge. Journal of Geophysical Research: Solid Earth, 99(B9): 17975—17995. doi: 10.1029/94JB00662 Korenaga J. , Holbrook W. S. , Singh S. C. , et al. , 1997. Natural gas hydrates on the southeast U. S. margin: Constraints from full waveform and travel time inversions of wide-angle seismic data. Journal of Geophysical Research: Solid Earth, 102(B7): 15345—15365. Kumar D. , Sen M. K. , Bangs N. L. , 2006. Seismic characteristics of gas hydrates at Hydrate Ridge, offshore Oregon. The Leading Edge, 25(5): 610—614. doi: 10.1190/1.2202665 Liu X. J. , Liu Y. K. , Khan M. , 2018. Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes. Geophysics, 83(4): S321—S332. doi: 10.1190/geo2017-0419.1 Liu Y. K. , Chang X. , Jin D. G. , et al. , 2011. Reverse time migration of multiples for subsalt imaging. Geophysics, 76(5): WB209—WB216. doi: 10.1190/geo2010-0312.1 Liu Y. K. , Liu X. J. , Osen A. , et al. , 2016. Least-squares reverse time migration using controlled-order multiple reflections. Geophysics, 81(5): S347—S357. doi: 10.1190/geo2015-0479.1 Mienert J., Bünz S., Guidard S., et al., 2005. Ocean bottom seismometer investigations in the Ormen Lange area offshore mid-Norway provide evidence for shallow gas layers in subsurface sediments. Marine and Petroleum Geology, 22(1—2): 287—297. Ravasi M. , Vasconcelos I. , Curtis A. , et al. , 2015. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics, 80(4): S137—S150. doi: 10.1190/geo2014-0554.1 Reiter E. C. , Toksoz M. N. , Keho T. H. , et al. , 1991. Imaging with deep-water multiples. Geophysics, 56(7): 1081–1086. doi: 10.1190/1.1443119 Romero L. A. , Ghiglia D. C. , Ober C. C. , et al. , 2000. Phase encoding of shot records in prestack migration. Geophysics, 65(2): 426–436. doi: 10.1190/1.1444737 Shiraishi K., No T., Gou F. J., 2022. Seismic reflection imaging of deep crustal structures via reverse time migration using offshore wide-angle seismic data on the eastern margin of the Sea of Japan. Earth, Planets and Space, 74(1): 28. Verschuur D. J. , Berkhout A. J. , 2011. Seismic migration of blended shot records with surface-related multiple scattering. Geophysics, 76(1): A7—A13. doi: 10.1190/1.3521658 Xia S. H. , Zhao D. P. , Qiu X. L. , et al. , 2007. Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophysical Research Letter, 34(10): 325—327. Zhang Y. B. , Liu Y. K. , Liu X. J. , et al. , 2020. Reverse time migration using water-bottom-related multiples. Geophysical Prospecting, 68(2): 446—465. doi: 10.1111/1365-2478.12851 Zhang Y. B. , Liu Y. K. , Yi J. , et al. , 2021. Fast Least-squares reverse time migration of OBN down-going multiples. Frontiers in Earth Science, 9: 730476. doi: 10.3389/feart.2021.730476 Zhao D. P., Todo S., Lei J. S., 2005. Local earthquake reflection tomography of the Landers aftershock area. Earth and Planetary Science Letters, 235(3—4): 623—631. Zheng Y. K. , Wang Y. B. , Chang X. , 2016. Eliminating artifacts in migration of surface-related multiples: An application to marine data. Interpretation, 4(4): SQ51—SQ57. doi: 10.1190/INT-2016-0020.1 Zheng Y. K. , Wang Y. B. , Chang X. , 2019. Least-squares data-to-data migration: An approach for migrating free-surface-related multiples. Geophysics, 84(2): S83—S94. doi: 10.1190/geo2018-0080.1 -