• ISSN 1673-5722
  • CN 11-5429/P

2023年土耳其双震静态应力触发研究

张小娟 盛书中 葛坤朋 胡捷

方良好, 疏鹏, 路硕, 郑颖平, 林承灏. 安徽淮南地区明龙山-上窑断裂第四纪活动特征[J]. 震灾防御技术, 2017, 12(3): 469-479. doi: 10.11899/zzfy20170303
引用本文: 张小娟,盛书中,葛坤朋,胡捷,2023. 2023年土耳其双震静态应力触发研究. 震灾防御技术,18(3):505−517. doi:10.11899/zzfy20230308. doi: 10.11899/zzfy20230308
Fang Lianghao, Shu Peng, Lu Shuo, Zheng Yingping, Lin Chenghao. Quaternary Active Features of Minglongshan-Shanyao Fault in Huainan Area of Anhui Province[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 469-479. doi: 10.11899/zzfy20170303
Citation: Zhang Xiaojuan, Sheng Shuzhong, Ge Kunpeng, Hu Jie. Study on the Static Stress Triggering Effect of the 2023 Turkey Doublet Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 505-517. doi: 10.11899/zzfy20230308

2023年土耳其双震静态应力触发研究

doi: 10.11899/zzfy20230308
基金项目: 国家自然科学基金项目(42174074、41704053);江西省科技计划项目(20212BCJ23002、20232ACB213013);东华理工大学博士科研启动基金(DHBK2019084)
详细信息
    作者简介:

    张小娟,女,生于1984年。硕士研究生。主要从事发震构造和应力触发等方面研究工作。E-mail:zhangxiaojuangd@qq.com

    通讯作者:

    盛书中,男,生于1982年。教授。主要从事构造应力场、应力触发等方面研究工作。E-mail:ssz@cea-igp.ac.cn

  • 12 震情简介参考https://www.scieau.com/articles/2023028636
  • 23 https://earthquake.usgs.gov/earthquakes/browse/significant.php?year=2023
  • 34 http://www.koeri.boun.edu.tr/sismo/2/latest-earthquakes/automatic-solutions/

Study on the Static Stress Triggering Effect of the 2023 Turkey Doublet Earthquakes

  • 摘要: 为了研究2023年土耳其双震间是否存在应力触发作用以及双震对周边断裂和余震的影响,本文基于USGS给出的双震破裂模型、全球震源机制解(GCMT)目录和土耳其海峡大学坎迪利天文台与地震研究所区域地震海啸监测中心实时地震资料,利用Coulomb 3.3软件从静态应力触发角度对土耳其双震序列进行了研究。研究结果表明:第1次主震在第2次主震震源处产生的库仑应力量值为0.033 MPa,超过应力触发阈值0.01 MPa,反映出第2次主震的发生受到第1次主震的触发作用。两次主震在第1次主震所在的东安纳托利亚断裂破裂段的东北部和西南部有应力加载作用,且加载的库仑应力量值较大;在7.8级地震破裂段上的作用为应力卸载,即发震段应力得到释放。两次主震在第2次主震所在的卡达克断裂的破裂段1和3交汇部位产生了应力卸载作用。余震库仑应力计算结果表明2次主震对余震存在明显的触发作用。上述研究结果可以为后续地震危险性分析等相关研究提供参考。
    1)  12 震情简介参考https://www.scieau.com/articles/2023028636
    2)  23 https://earthquake.usgs.gov/earthquakes/browse/significant.php?year=2023
    3)  34 http://www.koeri.boun.edu.tr/sismo/2/latest-earthquakes/automatic-solutions/
  • 明龙山-上窑断裂是淮南煤田北缘规模较大的边界断裂(宋传中等,2005),第四纪以来具有一定的活动性(姚大全等,2003陈安国等,2010)。该断裂所在的淮南地区历史上曾发生1831年凤台东北6¼级地震,此次地震是安徽省内有记载以来震级最大的地震之一(沈小七等,2008陈安国等,2010),震中烈度Ⅷ度,造成了“计家集(凤台东北)倒塌草瓦房屋300余间,压死27人;该处毗连之山里集震塌房屋,压死6人;平阿山(怀远、凤台交界处,怀远西南30km,现名为明龙山)裂开数十丈”的严重震害(国家地震局震害防御司,1995)。巨大的地震灾害主要由地下断层突然快速错动所致(徐锡伟,2006),强震的发生往往与构造活动关系密切(张培震等,2013),因此探讨本次地震的发震构造,并对其作出合理的构造解释或提出合理的构造归属,对分析判定本区的地震活动性及未来地震危险性等均具有重要参考意义。本文在卫星影像解译基础上,通过野外地质调查,对明龙山-上窑断裂第四纪最新活动的地貌特征及地质证据进行了研究,结合近年来对公元1831年凤台MS 6¼级地震的最新研究成果,探讨本次地震可能的发震构造,为分析本地区的强震活动特征奠定基础。

    明龙山-上窑断裂所在的淮南地区位于淮河中游,安徽省中北部,该区总体上为NWW向断层和褶皱构造的发育区,即“淮南对冲式断-褶构造带”(宋传中等,2005)。淮南对冲式断-褶构造带是印支期华北板块与扬子板块碰撞造山的产物,是大别山北侧薄皮推覆构造前锋带和外缘带的主体。区内发育了近东西向的颍上-定远断裂(F4)、阜阳-凤台断裂(F3)、临泉-刘府断裂(F2)和NW—NWW向的明龙山-上窑断裂(F1),这些断裂经过多期运动,构成了复杂的断裂构造格局。其中,以颍上-定远断裂(F4)和阜阳-凤台断裂(F3)为南、北边界,组成了由南向北逆冲的“八公山-舜耕山推覆构造带”;北部为明龙山-上窑断裂(F1)和临泉-刘府断裂(F2)所夹持的“明龙山-上窑推覆构造带”;中间为“淮南扇形复向斜带”,是淮南煤田的主体(图 1)。

    图 1  明龙山-上窑断裂带(b)及区域(a)构造图(据宋传中等(2005)修改)
    Figure 1.  Tectonic map of Minglongshan-Shangyao Fault (b) and its adjacent area (a) (Modified after Song et al., 2005)
    F1:明龙山-上窑断裂;F2:临泉-刘府断裂;F3:阜阳-凤台断裂;F4:颍上-定远断裂;F5:涡河断裂

    明龙山-上窑断裂带位于淮南对冲式断-褶带内,根据卫星影像解译及野外地质调查可知,断裂沿NW—NWW向系列线性挤压山体(明龙山、上窑、凤阳山)西南缘断续展布,全长约68km,为逆走滑断层,走向300°—315°,倾向NE,倾角70°—85°。明龙山-上窑断裂的几何结构较为清晰,分段特征明显,多条不连续的次级断裂段呈雁列状展布,可初步分为明龙山段(F1-1)、上窑段(F1-2)、凤阳山段(F1-3)等西、中、东3条次级断裂段(图 1(b)图 2)。其中,明龙山段(F1-1)沿明龙山西南缘展布,北西端止于临泉-刘府断裂,往南东延至淮河北岸,走向300°左右,该段断裂在明龙山附近线性特征较明显,构成了山体与平原的界线(图 2)。上窑段(F1-2)沿上窑山西南缘展布,向南东止于武店镇西南,走向300°—305°,该段断裂卫星影像较为清晰,是现代地貌的分界线,断裂东北侧为基岩山,西南侧为淮河冲积平原(图 3)。凤阳山段(F1-3)沿凤阳山西南缘展布,西起武店镇,向东止于颍上-定远断裂附近,走向315°左右,沿断裂可见断裂沟槽等构造地貌现象(图 4)。

    图 2  明龙山-上窑断裂影像图
    Figure 2.  Satellite image map of Minglongshan-Shangyao Fault
    图 3  上窑段断层地貌
    Figure 3.  Fault landforms of Shangyao segment
    图 4  凤阳山段断层地貌
    Figure 4.  Fault landforms of Fengyangshan segment

    第四纪以来构造活动强烈的地区,如中国西部地区,断裂在地表的形迹明显,其最新活动切穿了新地层,可以通过对断层上覆地层以及被断错地层的年龄来限定其活动时代,但对于断裂活动不甚强烈的地区上述方法很难发挥作用。本文研究的淮南地区地处华北与华南地震活动过渡带,属典型的中等强度地震活动区(张杰等,2005刘东旺等,2008姚大全等,2009),第四纪,尤其是晚第四纪以来断裂活动不甚强烈,再加上研究区内风化作用较强,人类活动改造迹象明显,断裂活动的地表形迹很难保存,往往只能通过采石场、路边等基岩区的人工露头来确定断裂的形迹以及其活动性。由于很难找到断裂第四纪剖面,只能通过基岩断裂的断层泥ESR测年来确定断裂上一次活动距今的时间。

    为了确定明龙山-上窑断裂带最后一次强烈活动的时间,我们对断裂经过的采石场进行了详细的追索,发现了多个典型的断层剖面,并采集了断层泥ESR样品,具体情况如下:

    该剖面位于明龙山汪街村一采石场内(图 5,位置见图 1(b)中剖面Ⅰ),剖面内可见寒武纪地层中发育有NW向断层f1和近EW向断层f2。其中f1发育在灰岩内,宽约0.3m,断面较平直光滑,沿断面发育约5mm厚的断层泥,断层泥较新鲜;f2发育在灰岩和片岩之间,宽约0.7m,由断层角砾及岩石粉末组成,胶结程度较低,呈松散状。孙瑛杰等(1999)在对沂沭断裂带大水场剖面断层泥的ESR年代学研究中发现,要想获得断层最后一次活动的ESR年龄,采样时应尽量寻找较薄的断层泥,且可确认断层的最后一次活动通过该断层面。因此,本次采集了沿f1断面发育的厚约5mm的断层泥ESR年龄样品JH34-ESR-1,测年结果为(243±24)ka。

    图 5  明龙山汪街村附近断层剖面
    Figure 5.  Fault profile nearby Wangjie village, Minglongshan

    在上窑镇老鸪山一带,断裂影像较清晰,断裂沿基岩和谷地交界处分布,表现出明显的线性特征,走向300°左右,地貌上形成不协调的反向陡崖,为断层持续活动的结果(图 6)。在垂直断裂走向开挖的大剖面中,见明龙山-上窑断裂构成的元古代灰色厚层状灰岩与深灰色薄层状灰岩、砂岩之间的界线,断层面连续清晰,沿断面形成厚约3.5m的断层破碎带,破碎带由岩石碎屑及粉末组成,胶结程度较低,呈松散状(图 7,位置见图 1(b)中剖面Ⅱ)。

    图 6  上窑镇老鸪山附近断层地貌
    Figure 6.  Fault landforms nearby Laogushan, Shangyao
    图 7  上窑镇老鸪山附近断层剖面
    Figure 7.  Fault profile nearby Laogushan, Shangyao

    在上窑镇光明村附近,断层地貌清晰,表现为元古代灰岩构成的线性特征较明显的低山,在低山的西南缘一采石场揭露出的大剖面中,见走向300°左右的断层破碎带(图 8,位置见图 1(b)中剖面Ⅲ)。破碎带宽约2.2m,红褐色,由灰岩碎块及粉末组成,胶结程度较低,呈松散状,沿断面发育一层较薄的断层泥,取该断层泥ESR年龄样品H81-ESR-1,测年结果为(126±15)ka。

    图 8  上窑镇光明村附近断层剖面
    Figure 8.  Fault profile nearby Guangming, Shangyao

    通过断层泥ESR测年方法测定断层最后一次活动的时代一直广受地质界的关注(Ikeya等,1982孙瑛杰等,1999Skinner,2000Fukuchi,2001林敏等,2005杨坤光等,2006)。研究认为,研究区的地震活动背景越强,断层泥ESR测年结果越能代表断裂最后一次活动的时代(王志才等,2002俞维贤等,2004),但在地震背景较弱至中等强度地区,断层泥ESR测年结果并不代表断层最后一次活动时间,但可以用来研究断裂晚新生代以来的强烈活动情况(Fukuchi,2001姚琪等,2008)。

    本次工作得到的断层泥ESR测年结果分别为(243±24)ka和(126±15)ka,由于淮南地区是典型的中等强度地震活动区(张杰等,2005刘东旺等,2008),晚第四纪以来断层活动强度较弱,这些测年结果并不能代表断层最后一次微弱活动时代,但可以确定断层最后一次强烈活动时代为中更新世晚期至晚更新世早期。

    另外,区域上在明龙山-上窑断裂西北发育有NW向的涡河断裂(图 1(b)中的F5)。前人研究表明,涡河断裂是一条规模较大的断裂,第四纪以来具有较强的活动性,其最新活动导致了1481年涡阳MS 6级地震和1525年亳州MS 5½级地震的发生(陆镜元等,1992姚大全等,2003陈安国等,2009方良好等,2015)。本文讨论的明龙山-上窑断裂和涡河断裂是同一构造背景下的两条走向相同的断裂,其间垂直距离约20km,断裂沿线均有6级左右地震发生,因此我们认为明龙山-上窑断裂和涡河断裂具有相似的第四纪活动特征。

    综合考虑测年结果及与区域内的重要断裂对比,我们推断明龙山-上窑断裂最新活动时代为中更新世晚期至晚更新世早期。

    1831年凤台MS 6¼级地震的极震区为包括明龙山在内的一个长轴约4.5km的NW向椭圆区域,极震区烈度为Ⅷ度(陈安国等,2010),本次地震的极震区位于明龙山-上窑断裂带与临泉-刘府断裂带的交汇部位(图 9),地震的发生可能与这两条断裂或其中之一的最新活动密切相关。

    图 9  1831年凤台MS 6¼级地震极震区分布图(据陈安国等(2010)修改)
    Figure 9.  Meizoseismal area of the 1831MS 6¼ earthquake in Fengtai (modified after Chen et al., 2010)

    为了确定临泉-刘府断裂第四纪以来的活动情况,我们对该断裂进行了调查。在凤阳山北麓的朱家洼附近(位于研究区东部)一个建筑基坑揭露的剖面上(图 10,位置见图 1(b)中剖面Ⅵ),见该断裂的4条断层(f1—f4)切割了元古代石英砂岩、泥质砂岩,断层性质皆为正断层,断层顶端被褐色砂砾石层(Q3dpl)覆盖。沿各断层面皆形成宽度不等的断层破碎带(f1宽约0.4m、f2宽0.3—1m、f3宽0.3—0.5m、f4宽约0.2mm),破碎带之间的泥质砂岩受断层影响变成了尚有原岩结构的粗碎裂岩,沿f3还形成厚约1cm的断层泥(图 11),取断层泥ESR年龄样品H10-ESR-1,测试结果为(585±95)ka。

    图 10  凤阳山北麓朱家洼附近临泉-刘府断裂断层剖面
    Figure 10.  Linquan-liufu fault profile nearby Zhujiawa, the north of Fengyangshan
    图 11  凤阳山北麓朱家洼附近断层剖面局部放大图
    Figure 11.  Partial enlarged detail of fault profile nearby Zhujiawa, the north of Fengyangshan

    由测年结果可知,临泉-刘府断裂是一条中更新世早期活动断裂。而前面的讨论表明,明龙山-上窑断裂为中更新世晚期至晚更新世早期断裂,相比临泉-刘府断裂,明龙山-上窑断裂具备发生6级左右地震的构造条件。从地理位置上分析,明龙山-上窑断裂正好位于史料考证确定的1831年凤台地震的极震区内,断裂走向与极震区长轴方向一致,均为NW向,而临泉-刘府断裂走向为NWW—近EW。另外,皖北淮河流域地区的中强震一般都发生在NE、NW和近EW向断裂的交汇部位,而NE、NW向断裂是发震构造(张杰等,2004)。综合分析,我们判断明龙山—上窑断裂为1831年凤台MS 6¼级地震发震构造的可能性最大。

    根据对明龙山-上窑断裂带的地质地貌调查、年龄样品及1831年凤台MS6¼级地震发震构造的分析,我们得到如下认识:

    (1)明龙山-上窑断裂沿NW—NWW向系列线性挤压山体西南缘断续展布,全长约68km,为逆走滑断层,走向300°—315°,倾向NE,倾角70°—85°;按地表出露情况可将断裂初步分为明龙山段、上窑段、凤阳山段等西、中、东3条次级断裂段。

    (2)根据断层泥ESR测年结果及与区域内的重要断裂进行对比,我们推断明龙山-上窑断裂为中更新世晚期至晚更新世早期断裂。

    (3)结合对1831年凤台MS 6¼级地震极震区位置、形态及区域断裂活动性的研究,我们认为明龙山-上窑断裂为本次地震发震构造的可能性最大。

    致谢: 本文的野外工作是在中国地震局地质研究所宋方敏研究员的指导下完成的,文中ESR样品由中国地震局地质研究所地震动力学国家重点实验室测定,在此一并感谢。
  • 图  1  研究区地质构造与地震分布图

    Figure  1.  Geological structure and earthquake distribution of the study area

    图  2  M7.8地震在M7.5地震破裂面上产生的库仑应力分布

    Figure  2.  The Coulomb stress change distribution on the rupture plane of the M7.5 earthquake caused by the M7.8 mainshock

    图  3  第1次主震在周边断裂上产生的库仑应力变化图

    Figure  3.  The coulomb stress change on the surrounding active faults caused by the first mainshock

    图  4  双震在周边断裂上产生的库仑应力变化图

    Figure  4.  The coulomb stress change on the surrounding active faults caused by the doublet earthquakes

    图  5  双震产生的库仑应力及余震分布图

    Figure  5.  The distribution of aftershocks and coulomb stress caused by the doublet earthquakes

    表  1  震源机制解参数表

    Table  1.   The parameter table of focal mechanisms

    序号发震时间/
    年-月-日
    纬度/(°)经度/(°)震级MW深度/km节面1节面2
    走向/(°)倾角/(°)滑动角/(°)走向/(°)倾角/(°)滑动角/(°)
    11979-12-2837.4735.855.441.023190014190180
    21986-05-0537.9737.776.010.026054916482144
    31986-06-0637.9737.885.810.025090016090180
    41989-06-2436.7035.885.141.02762−8820328−93
    51991-04-1037.2136.015.333.02972−7016027−136
    61997-01-2236.2535.955.710.024339−1534581−128
    71998-05-0938.2838.995.110.025183−734183−173
    81998-06-2736.8835.316.35.853811532175171
    91998-07-0436.87735.325.433.07255833884145
    102001-06-2537.2436.215.45.0175−9218915−83
    112003-07-1338.2938.965.510.07289134289179
    122005-11-2638.2638.815.18.523751−2033975−139
    132006-03-2935.2535.435.027.321943−1031783−132
    142008-09-0337.5138.505.05.721979−1031180−169
    152008-11-1238.8435.525.110.022770−1332178−160
    162010-11-1436.5836.014.92.52453−9421137−84
    172012-07-2237.5536.384.87.63853−7819838−106
    182012-09-1937.3137.105.07.021048−1130782−138
    192014-02-1436.7436.084.910.03570−5915536−144
    202014-06-0936.7436.054.817.63465−6316436−135
    212015-11-2938.8237.745.110.033872161747219
    222017-03-0237.6238.435.610.022578−2131969−167
    232018-04-2437.6038.515.210.021263−330487−153
    242018-10-0237.6737.404.75.024290−4233248−180
    252019-03-2538.6938.074.910.034364−15724270−28
    262020-02-2538.3438.805.010.023240−2934572−127
    272020-04-0335.9435.494.812.734550−11720447−61
    282020-04-1535.8635.534.910.021947−1031683−137
    292020-06-0538.2438.765.110.023449−2434072−137
    302020-08-0438.1938.705.610.023575−1532976−165
    312020-09-0838.0638.784.810.023863−733283−153
    322021-11-1238.2038.785.07.023782−2533065−171
    332022-04-0938.1138.675.310.024883−1434077−173
    342022-10-1137.2636.235.010.01752−8018139−103
    352023-02-0637.1737.037.817.954701132080160
    362023-02-0637.1336.946.814.521166−1330678−156
    372023-02-0638.0237.207.710.026142−835884−132
    382023-02-0737.7637.745.510.0204541010880144
    392023-02-0837.9537.655.57.5206741772978716
    402023-02-2036.1136.026.316.022745−1632979−134
    下载: 导出CSV
  • 程佳, 徐锡伟, 2018. 巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析. 地震地质, 40(1): 133—154 doi: 10.3969/j.issn.0253-4967.2018.01.011

    Cheng J. , Xu X. W. , 2018. Features of earthquake clustering from calculation of Coulomb stress around the Bayan Har Block, Tibetan Plateau. Seismology and Geology, 40(1): 133—154. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.01.011
    郝平, 傅征祥, 田勤俭等, 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究. 地震学报, 26(1): 30—37

    Hao P. , Fu Z. X. , Tian Q. J. , et al. , 2004. Large aftershocks triggering by Coulomb failure stress following the 2001 MS=8.1 great Kunlun earthquake. Acta Seismologica Sinica, 26(1): 30—37. (in Chinese)
    何金, 许鑫, 吴彪等, 2022. 汶川地区区域构造应力场特征及汶川MS8.0地震对周围主要断层面的影响. 地震科学进展, 52(3): 97—115

    He J. , Xu X. , Wu B. , et al. , 2022. Characteristics of regional tectonic stress field in Wenchuan area and the effect of Wenchuan MS8.0 earthquake on surrounding major fault surfaces. Progress in Earthquake Sciences, 52(3): 97—115. (in Chinese)
    贾若, 蒋海昆, 2014. 基于同震库仑应力变化的汶川地震余震频次研究. 中国地震, 30(1): 74—90

    Jia R. , Jiang H. K. , 2014. Aftershock sequence frequency research on the Wenchuan aftershock sequence based on the coseismic Coulomb stress changes. Earthquake Research in China, 30(1): 74—90. (in Chinese)
    靳志同, 崔华伟, 刘佳璐等, 2023.2023年土耳其两次强震对周围地区的静态应力影响. 防灾科技学院学报, 25(2): 1—12

    Jin Z. T. , Cui H. W. , Liu J. L. , et al. , 2023. Impact of two strong earthquakes in Turkey in 2023 on the static stress in the surrounding areas of the epicenters. Journal of Institute of Disaster Prevention, 25(2): 1—12. (in Chinese)
    李健, 詹文欢, 朱俊江等, 2016. 南海东部俯冲洋脊区段地震静态库伦应力分析. 海洋地质与第四纪地质, 36(5): 63—73

    Li J. , Zhan W. H. , Zhu J. J. , et al. , 2016. Static Coulomb stress analysis for earthquakes in the spreading ridge of the South China Sea. Marine Geology & Quaternary Geology, 36(5): 63—73. (in Chinese)
    李健, 詹文欢, 朱俊江等, 2017.1990年菲律宾Mw7.7级强震对马尼拉俯冲带静态应力触发影响. 海洋地质与第四纪地质, 37(6): 93—99

    Li J. , Zhan W. H. , Zhu J. J. , et al. , 2017. A preliminary study on static stress triggering effects on Manila subduction zone by the Philippine Mw7.7 earthquake 1990. Marine Geology & Quaternary Geology, 37(6): 93—99. (in Chinese)
    李玉江, 石富强, 张辉等, 2020. 川滇地区主要断裂带上的库仑应力变化及其对地震危险性的指示. 地震地质, 42(2): 526—546

    Li Y. J. , Shi F. Q. , Zhang H. , et al. , 2020. Coulomb stress change on active faults in Sichuan-Yunnan region and its implications for seismic hazard. Seismology and Geology, 42(2): 526—546. (in Chinese)
    刘盼, 李平恩, 廖力, 2017. 从库仑破裂应力和余震分布角度探讨汶川地震和芦山地震的关系. 震灾防御技术, 12(1): 40—55

    Liu P. , Li P. E. , Liao L. , 2017. Discussion of relationship between the Wenchuan earthquake and Lushan earthquake from the viewpoint of Coulomb failure stress change and spatial distribution of aftershocks. Technology for Earthquake Disaster Prevention, 12(1): 40—55. (in Chinese)
    刘强, 倪四道, 秦嘉政等, 2007.2007年宁洱6.4级地震强余震库仑破裂应力触发研究. 地震研究, 30(4): 331—336

    Liu Q. , Ni S. D. , Qin J. Z. , et al. , 2007. Triggered strong aftershock by Coulomb failure stress change caused by the 2007 Ning'er, Yunnan, MS6.4 earthquake. Journal of Seismological Research, 30(4): 331—336. (in Chinese)
    Seismology小组, 2023. 2023年2月6日土耳其双强震的震源机制中心解、地震触发关系及产生的地表变形. (2023-02-08)[2023-07-06]. https://mp.weixin.qq.com/s/Au_fjta-kqAuHmwkp4LUw.

    Seismology Group, 2023. The center focal mechanism solution of the 2023 Türkiye Doublet Earthquakes on February 6, 2023, and their static stress triggering relationship and surface deformation. (2023-02-08)[2023-07-06].https://mp.weixin.qq.com/s/Au_fjta-kqAuHmwkp4LUw. (in Chinese)
    盛书中, 万永革, 程佳等, 2012.2011年日本9.0级大地震的应力触发作用初步研究. 地震地质, 34(2): 325—337

    Sheng S. Z. , Wan Y. G. , Cheng J. , et al. , 2012. Primary research on the Coulomb stress triggering of the 2011 Mw 9.0 Tohoku earthquake. Seismology and Geology, 34(2): 325—337. (in Chinese)
    盛书中, 万永革, 蒋长胜等, 2015.2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834—1842

    Sheng S. Z. , Wan Y. G. , Jiang C. S. , et al. , 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake. Chinese Journal of Geophysics, 58(5): 1834—1842. (in Chinese)
    盛书中, 万永革, 徐锡伟等, 2019. 用大量地震震源机制解检验2008年汶川地震对后续地震的触发作用[J]. 地球物理学报, 62(12): 4588—4603 doi: 10.6038/cjg2019M0198

    Sheng S. Z. , Wan Y. G. , Xu X. W. , et al. , 2019. Using a large number of focal mechanism solutions to examine the Coulomb stress triggering effect of the 2008 Wenchuan earthquake on its subsequent earthquakes. Chinese Journal of Geophysics, 62(12): 4588—4603. (in Chinese) doi: 10.6038/cjg2019M0198
    石富强, 张辉, 邵志刚等, 2020. 华北地区库仑应力演化与强震活动关系. 地球物理学报, 63(9): 3338—3354

    Shi F. Q. , Zhang H. , Shao Z. G. , et al. , 2020. Coulomb stress evolution and stress interaction among strong earthquakes in North China. Chinese Journal of Geophysics, 63(9): 3338—3354. (in Chinese)
    宋金, 周龙泉, 2014.2014年于田MS7.3地震产生的静态库仑应力变化及对周边断层的影响. 中国地震, 30(2): 168—177

    Song J. , Zhou L. Q. , 2014. The static stress triggering effects related with the Yutian MS7.3 earthquake. Earthquake Research in China, 30(2): 168—177. (in Chinese)
    万永革, 吴忠良, 周公威等, 2000. 几次复杂地震中不同破裂事件之间的“应力触发”问题. 地震学报, 22(6): 568—576

    Wan Y. G. , Wu Z. L. , Zhou G. W. , et al. , 2000. "Stress triggering" between different rupture events in several earthquakes. Acta Seismologica Sinica, 22(6): 568—576. (in Chinese)
    汪建军, 许才军, 2017.2017年Mw6.5九寨沟地震激发的同震库仑应力变化及其对周边断层的影响. 地球物理学报, 60(11): 4398—4420

    Wang J. J. , Xu C. J. , 2017. Coseismic Coulomb stress changes associated with the 2017 Mw6.5 Jiuzhaigou earthquake (China) and its impacts on surrounding major faults. Chinese Journal of Geophysics, 60(11): 4398—4420. (in Chinese)
    解朝娣, 王英楠, 闫如玉等, 2021.2014年四川康定MS6.3和MS5.8地震的应力触发研究. 地震研究, 44(1): 9—14

    Xie C. D. , Wang Y. N. , Yan R. Y. , et al. , 2021. Study on stress triggering of 2014 Kangding MS6.3 and MS5.8 earthquakes. Journal of Seismological Research, 44(1): 9—14. (in Chinese)
    熊维, 谭凯, 刘刚等, 2015.2015年尼泊尔Mw7.9地震对青藏高原活动断裂同震、震后应力影响. 地球物理学报, 58(11): 4305—4316

    Xiong W. , Tan K. , Liu G. , et al. , 2015. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal Mw7.9 earthquake. Chinese Journal of Geophysics, 58(11): 4305—4316. (in Chinese)
    尹迪, 董培育, 石耀霖, 2022. 紫坪铺库区小震产生的库仑应力变化及其与汶川地震的关系. 地球物理学报, 65(1): 256—267

    Yin D. , Dong P. Y. , Shi Y. L. , 2022. Coulomb stress changes induced by small earthquakes in the Zipingpu reservoir area and its significance to the Wenchuan earthquake. Chinese Journal of Geophysics, 65(1): 256—267. (in Chinese)
    尹凤玲, 蒋长胜, 韩立波等, 2018. 红河断裂带库仑应力演化及未来地震危险性估计. 地球物理学报, 61(1): 183—198

    Yin F. L. , Jiang C. S. , Han L. B. , et al. , 2018. Seismic hazard assessment for the Red River fault: insight from Coulomb stress evolution. Chinese Journal of Geophysics, 61(1): 183—198. (in Chinese)
    张迎峰, 张国宏, 单新建等, 2017.2015年尼泊尔Gorkha Mw 7.9地震与Kodari Mw 7.3地震InSAR数据反演及其应力触发分析. 地震地质, 39(1): 104—116

    Zhang Y. F. , Zhang G. H. , Shan X. J. , et al. , 2017. The coseismic source slip and Coulomb stress triggering of 2015 Nepal Gorkha Mw 7.9 and Kodari Mw 7.3 earthquake based on InSAR measurements. Seismology and Geology, 39(1): 104—116. (in Chinese)
    周龙泉, 马宏生, 夏红等, 2008.2007年苏门答腊8.5级、8.3级地震强余震库仑破裂应力触发研究. 地震, 28(1): 40—46

    Zhou L. Q. , Ma H. S. , Xia H. , et al. , 2008. Large aftershocks triggering by coulomb failure stress following the 2007 MS8.5 and 8.3 Sumatra great earthquakes. Earthquake, 28(1): 40—46. (in Chinese)
    周云, 潘正洋, 王卫民等, 2021.1998年以来伽师地震(Mw≥6.0)应力相互作用与强震活动的关系. 地震地质, 43(2): 280—296

    Zhou Y. , Pan Z. Y. , Wang W. M. , et al. , 2021. Relationship between stress interaction and strong earthquake activity of Jiashi earthquakes (Mw≥6.0) since 1998. Seismology and Geology, 43(2): 280—296. (in Chinese)
    Cotton F. , Coutant O. , 1997. Dynamic stress variations due to shear faults in a plane-layered medium. Geophysical Journal International, 128(3): 676—688. doi: 10.1111/j.1365-246X.1997.tb05328.x
    Hardebeck J. L. , Nazareth J. J. , Hauksson E. , 1998. The static stress change triggering model: constraints from two southern California aftershock sequences. Journal of Geophysical Research: Solid Earth, 103(B10): 24427—24437. doi: 10.1029/98JB00573
    Harris R. A. , 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 103(B10): 24347—24358. doi: 10.1029/98JB01576
    King G. C. P. , Stein R. S. , Lin J. , 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3): 935—953.
    Lin J. , Stein R. S. , 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303.
    Nalbant S. S. , Hubert A. , King G. C. P. , 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. Journal of Geophysical Research: Solid Earth, 103(B10): 24469—24486. doi: 10.1029/98JB01491
    Papadimitriou E. E. , Karakostas V. G. , Papazachos B. C. , 2001. Rupture zones in the area of the 17.08. 99 Izmit (NW Turkey) large earthquake (Mw7.4) and stress changes caused by its generation. Journal of Seismology, 5(2): 269—276. doi: 10.1023/A:1011463420557
    Pauchet H. , Rigo A. , Rivera L. , et al. , 1999. A detailed analysis of the February 1996 aftershock sequence in the eastern Pyrenees, France. Geophysical Journal International, 137(1): 107—127. doi: 10.1046/j.1365-246x.1999.00776.x
    Pinar A. , Honkura Y. , Kuge K. , 2001. Seismic activity triggered by the 1999 Izmit earthquake and its implications for the assessment of future seismic risk. Geophysical Journal International. , 146(1): F1—F7. doi: 10.1046/j.0956-540x.2001.01476.x
    Stein R. S. , Barka A. A. , Dieterich J. H. , 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3): 594—604. doi: 10.1111/j.1365-246X.1997.tb05321.x
    Toda S. , Stein R. S. , Reasenberg P. A. , et al. , 1998. Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10): 24543—24565. doi: 10.1029/98JB00765
    Toda S. , Stein R. S. , Richards-Dinger K. , et al. , 2005. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5): B05 S16.
    Toda S., Lin J., Stein R. S., 2011. Using the 2011 Mw 9.0 off the pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7): 725—730.
    Toda S., Stein R. S., Özbakir A. D., et al., 2023. Stress change calculations provide clues to aftershocks in 2023 Türkiye earthquakes. (2023-02-08)[2023-07-06]. http://doi.org/10.32858/temblor.295.
    Wan Y. G., Wu Z. L., Zhou G. W., 2004. Focal mechanism dependence of static stress triggering of earthquakes. Tectonophysics, 390(1—4): 235—243.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  37
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 刊出日期:  2023-08-31

目录

/

返回文章
返回