• ISSN 1673-5722
  • CN 11-5429/P

基于ABAQUS的行车过程中桥梁动挠度模拟

韩轶 周正华 章逸 刘旭进 王杰 周稳

胡晓辉, 盛书中, 万永革, 李振月, 李泽潇, 杨帆. 基于国家地震科学数据开展断层面参数研究的初探——以唐山地震为例[J]. 震灾防御技术, 2019, 14(2): 341-351. doi: 10.11899/zzfy20190208
引用本文: 韩轶,周正华,章逸,刘旭进,王杰,周稳,2023. 基于ABAQUS的行车过程中桥梁动挠度模拟. 震灾防御技术,18(1):118−126. doi:10.11899/zzfy20230113. doi: 10.11899/zzfy20230113
Hu Xiaohui, Sheng Shuzhong, Wan Yongge, Li Zhenyue, Li Zexiao, Yang Fan. Preliminary Study on Fault Parameters Based on National Seismic Data——An Example of Tangshan Earthquake[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 341-351. doi: 10.11899/zzfy20190208
Citation: Han Yi, Zhou Zhenghua, Zhang Yi, Liu Xujin, Wang Jie, Zhou Wen. Dynamic Deflection Simulation of Bridge in Driving Process Based on ABAQUS Software[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 118-126. doi: 10.11899/zzfy20230113

基于ABAQUS的行车过程中桥梁动挠度模拟

doi: 10.11899/zzfy20230113
详细信息
    作者简介:

    韩轶,男,生于1997年。硕士。主要从事桥梁动挠度研究。E-mail:870968271@qq.com

    通讯作者:

    周正华,男,生于1962年。教授,博士研究生导师。主要从事防灾减灾与防护工程研究。E-mail:1418985380@qq.com

Dynamic Deflection Simulation of Bridge in Driving Process Based on ABAQUS Software

  • 摘要: 为研究桥梁结构在行车过程中动挠度的变化,同时考虑传统动荷载试验方法耗费人力、不利于桥梁快速检测与桥梁健康评估的局限性,提出基于ABAQUS软件模拟行车过程中桥梁动挠度的方法。首先将车辆荷载等效为振动移动荷载;然后根据车辆实际轴距、轮距和轮胎尺寸,在桥梁模型上划分行车带,通过Dload子程序,将荷载作用在行车带上;最后根据车速设置分析步和增量步时长,控制荷载在不同时间作用在行车带各区域模拟车辆运动。将该方法应用于实际连续箱梁桥动荷载试验中,对比分析各工况下的实测结果与模拟结果。实测结果与模拟结果基本一致,表明基于ABAQUS软件模拟行车过程中桥梁动挠度的方法可实现桥梁动挠度的快速检测评估,为通过动荷载试验数据评估桥梁安全提供简便方法。
  • 断层面参数是描述断层构造和地震机制的重要参数,该参数既体现了断层构造的性质,又为地震发震构造判定提供依据,在地球物理学、地质学等学科中具有重要地位。确定断层参数的方法主要有地质学方法、地球物理学方法等,其中地质学方法主要是通过浅层的地质信息推测断层产状,虽然比较直观,但断层浅部出露与深部在构造形态上可能存在较大差异,存在一定的局限性;地球物理学方法包括天然地震法、地震勘探、电法勘探等,其中地震勘探、电法勘探等物探方法多用于城市活断层探测,天然地震法确定地震断层面参数的方法主要有体波和面波联合法、面波波形及小震确定层面参数等。地球物理学方法所采用的资料包含深部信息,能更好地刻画深部断层形态。

    现今,随着地震台网的密集以及地震定位精度的提高,越来越多的学者开始使用小震分布确定断层面参数(王鸣等,1992Ouillon等,2008万永革等,2008王福昌等, 2012, 2013盛书中等,2014),但研究所使用的地震数据均为双差定位后的精定位地震目录数据。自2009年1月1日开始,由国家地震台网和31个区域地震台网组成的覆盖中国的地震监测台网初步建成,通过统一编目系统(黄文辉等,2016),实现了国家地震台网和区域地震台网的统一编目。通过改变国家地震台的数据上传方式,形成新的地震目录编辑方法,统一将地震事件进行震相删选和重新定位,大大提高地震参数的测定精度。本文尝试基于实例地震数据,直接使用中国地震台网统一地震目录来确定断层面参数,并将研究结果与前人利用精定位数据得到的结果进行比较,以验证该方法的可行性。

    1976年河北唐山发生了MS 7.8地震,许多学者对唐山地震的发震构造及破裂做了大量研究(虢顺民等,1977Butler等,1979陈运泰等,1979李钦祖等,1980张之立等,1980王景明等,1981Nábělek等,1987尤惠川等,2002),且震后震源区小震频发,故该地区积累了丰富的小震资料。随着地震定位方法在地震学中的应用及小震定位精度的提高,对唐山地区小震分布的研究也越来越多,张宏志等(2008)采用双差定位法对唐山地震震区中小地震重新定位,重新定位后的唐山断裂南段走向为NNE向,断裂北段转为NE向,滦县断裂附近区域地震分布呈“丁”字形,宁河断裂地震分布无明显优势方向;万永革等(2008)将小震分布确定断层面参数的方法应用于唐山地震序列,把唐山地震序列分为宁河断裂段、唐山断裂南段、唐山断裂北段、卢龙断裂段和滦县断裂段,对唐山地震序列定量研究,利用模拟退火算法和高斯迭代算法相结合的算法给出各段地震断层面的走向、倾角、位置及其误差。因此,本文选择地震资料丰富且研究程度较高的唐山地震进行研究及实例分析。

    本文使用的地震数据来源于国家科技基础条件平台——国家地震科学数据共享中心1提供的中国地震台网统一地震目录,研究区域为117.2°—119.2°E、39°—40°N(图 1)。选取2009年1月1日—2018年10月10日发生的4250次地震事件,震源深度集中分布在3—20km,震级主要为ML 2.5以下(图 2)。

    图 1  唐山地区小震分布
    Figure 1.  Distribution of small earthquakes in the Tangshan area
    图 2  小震深度(a)和震级分布图(b)
    Figure 2.  Histogram of depth (a) and magnitude (b) of small earthquakes

    1 http://data.carthquake.cn

    本研究采用万永革等(2008)提出的利用小震拟合断层面参数的方法。该方法基于2个基本假设:小震均发生在断层面及其附近区域;发震断层面可近似为1个或多个平面。基于小震震源位置到该平面的距离最小,建立求解断层面参数的数学模型,采用模拟退火全局搜索和高斯-牛顿局部搜索相结合的方法,给出全局最优断层面参数及其误差,同时还给出了断层面的顶点坐标,更直观地展示断层形态。该方法被广泛地应用于断层面参数的确定(Zhou等,2010李迎秋等,2011刘白云等,2012杨超群等,2013盛书中等,2014Wang等,2014潘睿等,2015)。为了方便结果的对比分析,断层面参数拟合所选取的各段数据范围(图 1中矩形方框)同万永革等(2008)的研究,即将唐山地震序列分为5段拟合。

    对各段断层面参数进行了分段拟合,拟合结果与万永革等(2008)的结果对比见表 1。其中,第1段为宁河断裂段,该段走向为246.6°,倾角为81.8°,走向和倾角的标准差相对较大,倾角与万永革等(2008)的研究结果相差15.8°,主要原因为该段小震的数量少,丛集性较差,因此反演断层参数结果最差。第2段为唐山断裂南段,该段走向为213.4°,倾角为81.9°。第3段为唐山断裂北段,该段走向为231.4°,倾角为89.1°,断层近乎直立(图 3(c)),小震集中分布在断层面4km范围内(图 3(d)),由于该段小震数目最多,反演得到走向和倾角的标准差最小,与万永革等(2008)的研究结果差值也最小。第4、5段分别为卢龙断裂段和滦县断裂段,其中卢龙断裂段的走向和倾角分别为46.1°和89.3°,断层面近乎直立,滦县断裂段的走向和倾角分别为125.1°和76.2°,结果与万永革等(2008)的研究结果相近。由表 1可见,各段断层顶点坐标的反演结果与万永革等(2008)的结果较为一致,其原因可能为两者反演断层面参数时选择的地震资料范围一致;断层面的深度分布与万永革等(2008)的结果相比均较浅,本文给出的断层面上边界均为4km左右,万永革等(2008)给出的断层面上边界分布更深,为6—10km。

    表 1  运用小震资料求得的唐山地震序列各段断层面走向、倾角、标准差和位置
    Table 1.  Fault plane parameters determined by using small earthquake for segments in Tangshan earthquake
    断层名 小震个数 走向/° 倾角/° 顶点位置(纬度/°N,经度/°E,深度/km) 数据来源
    标准差 标准差
    宁河断裂段 61 246.6 4.0 81.8 4.2 (39.32,117.94,3.8),(39.35,117.93,21.7)
    (39.29,117.75,21.7),(39.27,117.77,3.8)
    本文结果
    33 253.3 3.9 66.0 5.0 (39.31,117.96,10.0),(39.37,117.94,24.6)
    (39.32,117.74,24.6),(39.27,117.76,10.0)
    万永革等(2008)
    唐山断裂南段 250 213.4 0.8 81.9 1.5 (39.57,118.18,3.8),(39.58,118.15,22.0)
    (39.33,117.94,22.0),(39.31,117.96,3.8)
    本文结果
    98 210.1 1.2 73.7 2.8 (39.57,118.18,6.4),(39.59,118.13,22.9)
    (39.33,117.94,22.9),(39.31,117.99,6.4)
    万永革等(2008)
    唐山断裂北段 1646 231.4 0.3 89.1 0.6 (39.78,118.49,4.0),(39.78,118.49,19.0)
    (39.60,118.19,19.0),(39.60,118.19,4.0)
    本文结果
    665 233.1 0.5 89.1 1.3 (39.78,118.49,7.7),(39.78,118.49,21.8)
    (39.61,118.19,21.8),(39.61,118.19,7.7)
    万永革等(2008)
    卢龙断裂段 694 46.1 0.6 89.3 1.5 (39.86,118.82,4.0),(39.86,118.83,16.9)
    (39.72,118.62,16.9),(39.71,118.62,4.0)
    本文结果
    176 39.0 0.9 86.7 1.3 (39.72,118.62,7.8),(39.72,118.63,22.6)
    (39.86,118.78,22.6),(39.86,118.77,7.8)
    万永革等(2008)
    滦县断裂段 404 125.1 1.6 76.2 1.8 (39.75,118.70,4.2),(39.73,118.68,13.5)
    (39.67,118.80,13.5),(39.70,118.81,4.2)
    本文结果
    160 118.4 1.9 76.9 2.0 (39.75,118.70,8.4),(39.73,118.68,20.3)
    (39.68,118.80,20.3),(39.70,118.81,8.4)
    万永革等(2008)
    下载: 导出CSV 
    | 显示表格
    图 3  唐山断裂北段小震拟合结果
    Figure 3.  The fitting result by using small earthquakes along the north segment of Tangshan fault

    前人对唐山地震断层面作了大量研究,根据P波初动(张之立等,1980)和野外地质调查(虢顺民等,1977尤惠川等,2002)得到断层走向为N30°E;根据面波资料(Butler等,1979)得到断层面走向为N40°E;根据大地测量资料(陈运泰等,1979)和卫星资料(王景明等,1981)得到断层走向为N50°E。上述结果表明唐山地震破裂非常复杂,实际断层面并非1个简单的几何面,而是错综复杂的破裂体。陈运泰等(1979)的研究结果表明唐山地震总体走向为N49°E,初始破裂的走向为N30°E,即破裂起始于N30°E走向的南段断裂,而后转向N50°E走向的北段断裂(万永革等,2008),与本文给出的断层南段走向213.4°、北段走向231.4°基本一致。对于断层倾角,李钦祖等(1980)张之立等(1980)给出总体倾向为120°,倾角为90°;Nebelek等(1987)给出断层为西北倾向,南段倾角为78°,北段倾角为80°;尤惠川等(2002)通过野外地质调查给出总体断层倾向向西,倾角70°—80°,与本文给出的断层南段倾角81.9°、北段倾角89.1°较为一致。杜晨晓等(2010)根据前人研究结果得到滦县地震的震源参数,其断层走向为N120°E,倾角为80°,与本文给出的滦县段反演结果较为一致。

    本文结果与万永革等(2008)的研究结果存在一定差异,为判定每段差异是否在可接受的范围内,搜集了18组由不同学者和机构给出的同一地震断层面参数(表 2),对其差异进行统计可在一定程度上反映对断层面参数的约束能力,并将其作为参考,探讨本文研究结果的合理性。各组参数中走向和倾角的最大、最小差异值如图 4所示。

    表 2  地震断层面参数研究结果差异统计
    Table 2.  Statistical results of the differences in seismic fault plane parameters
    地震事件 主节面/° 走向差异/° 倾角差异/° 数据来源
    走向 倾角 最大值 最小值 最大值 最小值
    2001年2月23日四川雅江MS 6.0地震 123 25 31 6 17 8 龙思胜(2004)
    117 42 美国地质勘探局(USGS)
    92 34 哈佛大学(HRV)
    2003年9月27日中俄蒙边界MS 7.9地震 131 71 4 1 14 6 全球矩心矩张量(gCMT)
    130 85 美国地质勘探局(USGS)
    127 79 赵翠萍等(2005)
    2006年12月26日中国台湾南部滨海MS 7.2地震 330 58 11.5 4 25 5.1 全球矩心矩张量(gCMT)
    334 83 美国地质勘探局(USGS)
    341.5 77.9 郭志等(2008)
    2008年5月12日四川汶川MS 8.0地震 357 68 23 2 22 2 全球矩心矩张量(gCMT)
    15 60 美国地质勘探局(USGS)
    7 55 地球物理研究所(CEA-IGP)
    5 48 郭祥云等(2010)
    352 70 郑勇等(2009)
    2008年10月5日新疆天山-帕米尔MS 6.7地震 82 53 24.8 7.8 10.3 2.3 全球矩心矩张量(gCMT)
    65 45 美国地质勘探局(USGS)
    57.2 42.7 苏金蓉等(2013)
    2010年4月14日青海玉树MS 7.1地震 300 88 6.4 1 10 0 全球矩心矩张量(gCMT)
    301 86 美国地质勘探局(USGS)
    209 88 中国地震台网中心(CENC)
    294.6 78 盛书中等(2014)
    2012年5月3日甘肃金塔MS 5.4地震 162 80 13 1 16 2 全球矩心矩张量(gCMT)
    163 74 地球物理研究所(CEA-IGP)
    159 78 地震预测研究所(CEA-IES)
    172 64 张辉等(2012)
    2013年4月20日四川芦山MS 7.0地震 210 38 12 0 14 1 全球矩心矩张量(gCMT)
    198 33 美国地质勘探局(USGS)
    210 47 地震预测研究所(CEA-IES)
    216 45 谢祖军等(2013)
    209 46 吕坚等(2013)
    2013年8月28日云南德钦MS 5.9地震 292 43 14 7 10 0 全球矩心矩张量(gCMT)
    285 53 地球物理研究所(CEA-IGP)
    299 53 罗钧等(2015)
    2014年2月12日新疆于田MS 7.3地震 242 82 3 0 4 0 美国地质勘探局(USGS)
    239 82 中国地震局(CEA)
    242 78 中国地震台网中心(CENC)
    2014年5月30日云南盈江MS 6.1地震 80 83 20 2 3 0 美国地质勘探局(USGS)
    82 85 全球矩心矩张量(gCMT)
    260 82 地球物理研究所(CEA-IGP)
    85 83 赵旭等(2014)
    2014年8月3日云南鲁甸MS 6.5地震 162 86 2 0 4 0.9 美国地质勘探局(USGS)
    160 90 全球矩心矩张量(gCMT)
    160 87 地球物理研究所(CEA-IGP)
    160 89.1 刘丽芳等(2014)
    2016年1月21日青海省门源县MS 6.4地震 143 35 34 2 11 2 中国地震台网中心(CENC)
    141 38 地球物理研究所(CEA—IGP)
    134 43 哈佛大学(HRV)
    157 34 李启雷(2016)
    129 45 李晓峰(2017)
    2017年8月8日四川九寨沟MS 7.0地震 153 84 6 0 10 1 美国地质勘探局(USGS)
    150 78 全球矩心矩张量(gCMT)
    156 79 易桂喜等(2017)
    150 80 杨宜海等(2017)
    152 74 谢祖军等(2018)
    2017年11月18日西藏米林M 6.9地震 132 55 8.3 1 12.4 2.4 美国地质勘探局(USGS)
    124.7 59 地震预测研究所(CEA-IES)
    133 46.6 吴宝峰(2017)
    2018年9月8日云南墨江5.9级地震* 129 81 6 1.8 2 1 赵博等*
    123 79 郭祥云等*
    124.8 80 地震预测研究所(CEA-IES)
    2018年9月12日陕西宁强5.3级地震* 171 67 6 4.1 18 0 中国地震台网中心台网部应急组*
    165 85 赵博等*
    165 85 郭祥云等*
    169.1 78 地震预测研究所(CEA-IES)
    2018年9月28日西藏日土5.1级地震* 323 71 28 5 28 2 中国地震台网中心台网部应急组*
    304 76 赵博等*
    295 61 郭祥云等*
    318 59 地震预测研究所(CEA-IES)
    309 48 地球物理研究所(CEA—IGP)
    注:加*地震数据来源于中国地震台网中心的地震监测人微信公共号及微信公众平台。
    下载: 导出CSV 
    | 显示表格
    图 4  同一地震断层走向(a)和倾角(b)差异值统计
    Figure 4.  The differences of fault strike (a) and dip (b) of the same earthquake by different studies

    图 4可见,不同学者和机构给出的断层走向和倾角的差异值虽有一定的离散性,但其差异范围可作为参考。本文得到的走向和倾角的差异值均在18组结果的最大及最小差异范围内,故利用中国地震台网统一地震目录计算得到的结果是可靠的,证明中国地震台网统一地震目录可以用于断层面参数的确定。

    本文各段断层的顶点坐标(表 1)与万永革等(2008)的结果一致,但断层深度有一定的差距。本文结果显示各段断层上边界均为4km左右,万永革等(2008)给出的断层上边界分布更深,造成差异的主要原因可能是万永革等(2008)认为5km以上的小震是深部破裂引发的沉积层破裂,故在确定发震断层面参数时未考虑5km以上的小震,而本文在进行断层面参数反演时,将所有的地震事件都考虑在内,因此反演的断层面上边界分布较浅。

    胡新亮等(2001)运用小孔径数字地震台网对唐山地区的地震进行重新定位,通过对比以往地震目录中给出的震源深度,表明唐山地区的地震发生在地壳浅层。于湘伟等(2010)采用双差定位法对华北地区的地震重新定位,精定位后的结果显示83%的地震震源深度位于0—15km,与其他学者的研究结果一致(胡幸平等,2013赵博等,2013李红光等,2015),上述研究表明华北地区的地震主要发生在中上地壳。王椿镛等(2017)给出华北地壳厚度为32—35km,其中上地壳厚度为10—12km,中地壳为8—10km。本文采用的地震数据震源深度主要分布于3—20km,位于华北地壳的中上部,与华北地区地震震源深度分布一致(图 2(a)),由此表明统一地震目录数据给出的地震深度范围是合理的,因此,反演出的断层面上、下边界位置是可靠的。

    本文基于中国地震台网统一地震目录提供的地震资料,应用小震确定断层面参数法确定了唐山地震序列的断层面参数,研究中数据分段及其选取范围均参考了万永革等(2008)的研究。对所得的各断层面参数进行对比分析,表明本文结果与万永革等(2008)研究结果的差异在可接受范围内,证明了中国地震台网统一地震目录可以用于断层面参数的确定。

    随着地震台网的加密布设,其地震定位能力和定位精度均显著提高。地震活跃地区大量的地震定位数据为拟合断层的几何形态奠定了基础,今后,国家台网统一地震目录可广泛地应用于活断层的发现及其形态的确定。

    致谢: 感谢审稿专家提出的宝贵修改意见以及国家地震科学数据共享中心提供的数据。
  • 图  1  半正弦荷载函数

    Figure  1.  Half sine load function

    图  2  三角形荷载函数

    Figure  2.  Triangular load function

    图  3  行车带示意图

    Figure  3.  Diagram of driving belt

    图  4  荷载移动示意图

    Figure  4.  Load movement diagram

    图  5  挂车平面尺寸

    Figure  5.  Layout plan of trailer dimensions

    图  6  挂车作用桥面应力云图

    Figure  6.  Stress nephogram of trailer acting bridge deck

    图  7  常规二轴、三轴、五轴重车平面尺寸(单位:米)

    Figure  7.  General two - axis, three - axis, five - axis heavy car plane size layout(Unit:m)

    图  8  常规二轴、三轴、五轴重车作用桥面应力云图

    Figure  8.  Stress nephogram of bridge deck of conventional two-axis, three-axis and five-axis heavy truck

    图  9  连续箱梁桥立面及横断面(单位:厘米)

    Figure  9.  Elevation and sectional view of continuous box girder bridge(Unit:cm)

    图  10  连续箱梁桥有限元模型

    Figure  10.  Finite element model of continuous box girder bridge

    图  11  20 km/h车速跑车试验分析结果

    Figure  11.  Test and simulation results under vehicle moving at 20 km/h speed

    图  12  30 km/h车速跑车试验分析结果

    Figure  12.  Test and simulation results under vehicle moving at 30 km/h speed

    图  13  40 km/h车速跑车试验分析结果

    Figure  13.  Test and simulation results under vehicle moving at 40 km/h speed

    图  14  80 km/h车速跑车试验分析结果

    Figure  14.  Simulation results under vehicle moving at 80 km/h speed

    图  15  100 km/h车速跑车试验分析结果

    Figure  15.  Simulation results under vehicle moving at 100 km/h speed

    表  1  各跨跨中动挠度校验系数

    Table  1.   Check coefficients of peak values in the main span

    工况实测值计算值时间误差/s校验系数
    时间/t最大动挠
    度/mm
    时间/t最大动挠
    度/mm
    20 km/h车速峰值13.130.742.310.860.820.86
    峰值28.50−1.907.93−2.040.930.93
    峰值313.800.5812.420.621.380.94
    30 km/h车速峰值11.580.821.600.960.020.86
    峰值25.65−1.845.30−2.110.350.87
    峰值39.190.549.260.660.070.81
    40 km/h车速峰值11.630.961.560.950.070.99
    峰值24.29−2.234.21−2.290.080.97
    峰值36.870.686.910.820.040.83
    下载: 导出CSV
  • 胡顺仁, 2014. 提高光电成像挠度系统的识别精度. 光电工程, 41(2): 1—5

    Hu S. R. , 2014. Improving recognition accuracy of optoelectronic imaging deflection system. Opto-Electronic Engineering, 41(2): 1—5. (in Chinese)
    兰日清, 丰彪, 匙庆磊, 2020. 倾角仪法测量高铁桥梁动挠度研究. 世界地震工程, 36(1): 56—62

    Lan R. Q. , Feng B. , Chi Q. L. , 2020. Study on dynamic deflection of high-speed railway bridge using inclinometer method. World Earthquake Engineering, 36(1): 56—62. (in Chinese)
    李锦华, 张焕涛, 刘全民, 2020. 单个移动荷载激励下桥梁最大位移响应的频域分析. 交通运输工程学报, 20(1): 74—81 doi: 10.19818/j.cnki.1671-1637.2020.01.005

    Li J. H. , Zhang H. T. , Liu Q. M. , 2020. Frequency domain analysis for maximum displacement response of bridges excited by single moving load. Journal of Traffic and Transportation Engineering, 20(1): 74—81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.005
    李旭民, 2010. 三次样条插值函数在桥梁挠度测量中的应用研究. 城市道桥与防洪, (10): 167—170 doi: 10.3969/j.issn.1009-7716.2010.10.044

    Li X. M. , 2010. Application of cubic spline interpolation in bridge deflection measurement. Urban Roads Bridges & Flood Control, (10): 167—170. (in Chinese) doi: 10.3969/j.issn.1009-7716.2010.10.044
    李忠献, 陈锋, 2006. 简支梁桥与多跨连续梁桥上移动荷载的识别与参数分析. 工程力学, 23(12): 91—99 doi: 10.3969/j.issn.1000-4750.2006.12.017

    Li Z. X. , Chen F. , 2006. Identification and parametric analysis of moving loads on simply supported and multi-span continuous bridges. Engineering Mechanics, 23(12): 91—99. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.12.017
    卢永飞, 秦亮, 2020. T形刚构桥桥墩参数对车-桥动力响应影响研究. 震灾防御技术, 15(4): 718—730 doi: 10.11899/zzfy20200406

    Lu Y. F. , Qin L. , 2020. Study on influence of pier parameters of T-shaped rigid frame bridge on vehicle bridge dynamic response. Technology for Earthquake Disaster Prevention, 15(4): 718—730. (in Chinese) doi: 10.11899/zzfy20200406
    梅泽洪, 李小军, 王玉石等, 2017. 考虑场地效应的非一致激励下桥梁地震响应特点分析. 震灾防御技术, 12(3): 646—654 doi: 10.11899/zzfy20170320

    Mei Z. H. , Li X. J. , Wang Y. S. , et al. , 2017. Characteristics of earthquake performances of bridge under multi-support excitation with consideration of site effects. Technology for Earthquake Disaster Prevention, 12(3): 646—654. (in Chinese) doi: 10.11899/zzfy20170320
    彭安平, 李亮, 2019. 振动荷载与移动荷载作用下桥梁动力响应对比试验与数值分析. 铁道科学与工程学报, 16(9): 2256—2264 doi: 10.19713/j.cnki.43-1423/u.2019.09.017

    Peng A. P. , Li L. , 2019. Comparative test and numerical simulation of dynamic response of bridge under vibration load and vehicle load. Journal of Railway Science and Engineering, 16(9): 2256—2264. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2019.09.017
    谭国金, 刘寒冰, 程永春等, 2011. 基于车-桥耦合振动的简支梁桥冲击效应. 吉林大学学报(工学版), 41(1): 62—67

    Tan G. J. , Liu H. B. , Cheng Y. C. , et al. , 2011. Analysis of impact of vehicle to simply supported beam bridge based on vehicle-bridge coupled vibration. Journal of Jilin University (Engineering and Technology Edition), 41(1): 62—67. (in Chinese)
    王辉, 2021. 地基微波干涉测量桥梁监测信号ESMD-BSS降噪方法研究. 北京: 北京建筑大学.

    Wang H., 2021. Research on ESMD-BSS de-noising method of ground-based microwave interferometry for bridge monitoring signal. Beijing: Beijing University of Civil Engineering and Architecture. (in Chinese)
    王巍, 2016. 基于多模干涉技术的光纤声发射技术用于桥梁挠度监测的研究. 南京: 东南大学.

    Wang W., 2016. A novel multimode interference based optical fiber ultrasonic sensing technique for bridge deflection monitoring. Nanjing: Southeast University. (in Chinese)
    杨学山, 侯兴民, 廖振鹏等, 2002. 桥梁挠度测量的一种新方法. 土木工程学报, 35(2): 92—96 doi: 10.3321/j.issn:1000-131X.2002.02.016

    Yang X. S. , Hou X. M. , Liao Z. P. , et al. , 2002. A new method for bridge deflection measurement. China Civil Engineering Journal, 35(2): 92—96. (in Chinese) doi: 10.3321/j.issn:1000-131X.2002.02.016
    张丽芳, 艾军, 陈建兵等, 2013. 桥梁动荷载试验及其有限元简化模拟研究. 武汉理工大学学报(交通科学与工程版), 37(2): 250—253 doi: 10.3963/j.issn.2095-3844.2013.02.007

    Zhang L. F. , Ai J. , Chen J. B. , et al. , 2013. Research on bridge dynamic load test and its finite simplified simulation. Journal of Wuhan University of Technology (Transportation Science & Engineering), 37(2): 250—253. (in Chinese) doi: 10.3963/j.issn.2095-3844.2013.02.007
    张亚宾, 陈超, 刘颖姣, 2011. 移动荷载作用下桥梁动态响应的数值模拟. 河北理工大学学报(自然科学版), 33(2): 170—174

    Zhang Y. B. , Chen C. , Liu Y. J. , 2011. The dynamic response of bridge in the role of moving load. Journal of Hebei Institute of Technology (Natural Science Edition), 33(2): 170—174. (in Chinese)
    中华人民共和国交通运输部, 2015. JTG/T J21—01—2015 公路桥梁荷载试验规程. 北京: 人民交通出版社, 36—39.

    Ministry of Transport of the People's Republic of China, 2015. JTG/T J21—01—2015 Load Test Methods for Highway Bridge. Beijing: China Communications Press, 36—39.(in Chinese)
    中华人民共和国住房和城乡建设部, 2011. CJJ 11—2011 城市桥梁设计规范. 北京: 中国建筑工业出版社, 80—84.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2011 CJJ 11—2011 Code for Design of The Municipal Bridge. Beijing: Chinese Construction Industry Publishing house, 80—84.(in Chinese)
    周勇政, 2018. 高速铁路共振问题相关标准研究. 铁道标准设计, 62(9): 182—186 doi: 10.13238/j.issn.1004-2954.201710110007

    Zhou Y. Z. , 2018. Study on specifications of high speed railway resonance. Railway Standard Design, 62(9): 182—186. (in Chinese) doi: 10.13238/j.issn.1004-2954.201710110007
    Kumar C. P. S. , Sujatha C. , Shankar K. , 2015. Vibration of simply supported beams under a single moving load: a detailed study of cancellation phenomenon. International Journal of Mechanical Sciences, 99: 40—47. doi: 10.1016/j.ijmecsci.2015.05.001
    Liu Y. , Deng Y. , Cai C. S. , 2015. Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China. Structural Control and Health Monitoring, 22(12): 1408—1425. doi: 10.1002/stc.1751
    Nguyen S. T. , La H. M. , 2021. A climbing robot for steel bridge inspection. Journal of Intelligent & Robotic Systems, 102(4): 75.
    Sousa P. J. , Barros F. , Lobo P. , et al. , 2019. Experimental measurement of bridge deflection using Digital Image Correlation. Procedia Structural Integrity, 17: 806—811. doi: 10.1016/j.prostr.2019.08.107
    Zhang K. , Luo Y. F. , 2018. Interlaminar performance of waterproof and cohesive materials for concrete bridge deck under specific test conditions. Journal of Materials in Civil Engineering, 30(8): 04018161. doi: 10.1061/(ASCE)MT.1943-5533.0002357
  • 期刊类型引用(2)

    1. 李枭,万永革,许鑫,冯淦. 地震断层带破碎非均匀程度研究——以新马德里地震带Reelfoot断层为例. 地球物理学报. 2022(08): 2970-2983 . 百度学术
    2. 张苏祥,盛书中,席彪,房立华,吕坚,王甘娇,张潇. 基于改进的DBSCAN算法自动识别断层方法研究及其在唐山地区的应用. 地震地质. 2022(06): 1615-1633 . 百度学术

    其他类型引用(1)

  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  32
  • PDF下载量:  16
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-08-20
  • 刊出日期:  2023-03-31

目录

/

返回文章
返回