• ISSN 1673-5722
  • CN 11-5429/P

沉管隧道纵向抗震韧性评价方法研究

李心熙 禹海涛

张灿旭,马完君,王舜禹,朱健,卢建旗,谢志南,2022. 盆地对三分量地震动持时的影响初探. 震灾防御技术,17(3):442−453. doi:10.11899/zzfy20220304. doi: 10.11899/zzfy20220304
引用本文: 李心熙,禹海涛,2023. 沉管隧道纵向抗震韧性评价方法研究. 震灾防御技术,18(1):37−43. doi:10.11899/zzfy20230105. doi: 10.11899/zzfy20230105
Zhang Canxu, Ma Wanjun, Wang Shunyu, Zhu Jian, Lu Jianqi, Xie Zhinan. Primary Exploration of the Basin Effect on Significant Duration[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 442-453. doi: 10.11899/zzfy20220304
Citation: Li Xinxi, Yu Haitao. Seismic Resilience Assessment for Longitudinal Response of Immersed Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 37-43. doi: 10.11899/zzfy20230105

沉管隧道纵向抗震韧性评价方法研究

doi: 10.11899/zzfy20230105
基金项目: 国家自然科学基金(41922059、42177134)
详细信息
    作者简介:

    李心熙,女,生于1995年。博士研究生。主要从事地下结构抗震研究工作。E-mail:2010049@tongji.edu.cn

    通讯作者:

    禹海涛,男,生于1983年。教授,博士生导师。主要从事地下结构防灾减灾研究工作。E-mail:yuhaitao@tongji.edu.cn

Seismic Resilience Assessment for Longitudinal Response of Immersed Tunnels

  • 摘要: 抗震韧性是评估结构抗震性能的重要手段,但目前对沉管隧道纵向抗震韧性评价的研究较缺乏。基于梁-弹簧模型建立能够合理考虑沉管隧道结构特征及接头构造的沉管隧道多尺度分析模型,选择合理的评估指标,根据不同极限状态定义获得地震易损性曲线,通过构建合理的性能恢复函数计算隧道韧性指数,从而建立沉管隧道抗震韧性评估方法,并以某沉管隧道实际工程为例进行隧道抗震韧性分析,揭示地震动强度及地层-结构相对刚度比等关键参数的影响规律。研究结果表明,随着PGA的增加,隧道震后剩余功能函数显著下降,隧道抗震韧性明显降低;隧道韧性指数随着地层-结构相对刚度比的增大而增大。
  • 地震动持时是表征地震动特性的三要素之一。地震动持时,尤其是强地震动持时对结构震害和强震地质灾害的诱发具有重要影响(Stewart等,2003Hancock等,2006Bahrampouri等,2021)。持时是随机点源与随机有限断层地震动模拟方法(Boore等,2014Kolli等,2021Meimandi-Parizi等,2022)、人工地震动合成方法(Liang等,2007Muscolino等,2021)的关键参数,也是评价模拟或合成地震动精度和可靠性的重要指标(Olsen等,2010)。与地震动峰值参数不同,持时的定义并不唯一。已有持时定义大致分为地震动记录持时和地震动作用下的结构反应持时(Bommer等,1999)。就地震动特性分析、模拟及其结果评估而言,常用持时定义为基于加速度地震动记录计算所得归一化Arias强度到达不同阈值之间的时间间隔,如Ds5-95Trifunac等,1975),其中下标5和95分别为5%和95%阈值。

    由持时参数预测方程可知,持时影响要素大致包括震源、路径和场地(Kempton等,2006Afshari等,2016Bahrampouri等,2021)。震源要素主要表征参数包括地震类别(地壳地震、俯冲带板内和板缘地震)、震级、应力降、发震断层埋深、震中位置剪切波速等。路径要素主要表征参数为不同类型的震源-台站距离。场地要素主要表征参数为场地基本周期、场地浅部沉积结构表征参数(VS30)、盆地或沉积平原场地深部沉积结构表征参数(${Z_{1.0}}$:剪切波速1.0 km/s等值面深度)等。与此同时,基于地震波动数值模拟,研究人员分析了断层动力学破裂过程、地震波传播(波阵面几何扩展、介质分界面反射和透射、非均匀体散射)、一般场地对不同频段地震动的放大等影响持时的物理机制(Bommer等,1999Aochi等,2006)。针对特殊场地,盆地对地震动持时的影响机制得到广泛关注(Semblat等,2005Lee等,2008Abraham等,2016Bijelić等,2019),然而受地下波速结构空间分辨率偏低的限制,仅考虑了盆地对低频段地震动的影响,即深厚盆地会显著增加低频段地震动的持时。另外,与一般地震动参数场地效应(场地对地震动峰值、加速度反应谱的放大效应等)表征模型不同,目前对直接利用数值模拟构建的持时盆地效应表征模型在预测方程中应用的研究较少。

    上述研究工作多面向水平向地震动,对竖向地震动持时的研究较少(Bahrampouri等,2021)。竖向地震动对基底隔振结构、高架水箱、砌体结构等的地震响应有重要影响(Loghman等,2015Kamarroudi等,2021Kallioras等,2022),且近年来面向三分量地震动的随机有限断层方法研究得到关注(Ruiz等,2018),该方法假定竖向地震动持时与水平向地震动持时相当。刘浪等(2011)明确指出汶川地震中竖向地震动持时普遍高于水平向地震动持时。Boore(2003)以单个记录为例,阐述了将随机点源地震动模拟方法计入盆地对持时影响的必要性,但缺乏广泛验证。为此,本文以关东盆地区域日本KiK-net台网记录为例,结合残差分析方法,探讨水平向地震动持时预测方程应用于预测竖向地震动持时的可行性及盆地对三分量地震动持时的影响。

    收集整理了2004—2017年15次地壳地震事件中关东盆地区域日本KiK-net台网三分量加速度记录,矩震级为MW5.1~MW6.9(表1),地壳地震与俯冲带地震的区分参照Zhao等(2015)的地震分类方法。选取关东盆地内22个台站及盆地外49个台站(表2),盆地外台站分布在盆地边界外30 km范围内,盆地边界参考Marafi等(2017)的方法确定。盆地外台站分布在盆地边界外30 km范围内。地震震中和台站位置的空间分布如图1所示,由图1可知,震中-台站集中在北偏东45°、北偏西45°和正东方位。

    表 1  地震基本信息
    Table 1.  Information of selected crustal earthquakes
    发震时间矩震级MW震中纬度/ °震中经度/ °断层距范围/ km事件台站数量/ 个事件记录总数/ 条
    2004年10月23日17时56分6.637.289 5138.870 341.8~258.462186
    2004年10月23日18时34分6.337.303 3138.933 248.0~263.361183
    2007年07月16日10时13分6.637.556 8138.609 572.8~297.763189
    2011年03月12日03时59分6.336.986 0138.597 822.6~248.462186
    2011年03月16日12时52分5.835.837 0140.906 510.0~220.860180
    2011年03月19日18时56分5.836.783 7140.571 57.7~201.464192
    2011年04月11日17时16分6.736.945 7140.672 712.8~227.765195
    2011年04月11日20时42分5.536.966 0140.635 020.8~233.764192
    2011年04月12日14时07分5.937.052 5140.643 525.1~239.065195
    2011年04月13日10时08分5.336.915 0140.709 716.6~229.364192
    2012年03月14日21时05分6.035.747 7140.932 08.7~226.161183
    2013年09月20日02时25分5.437.051 3140.695 317.6~231.859177
    2016年11月22日05时59分6.937.354 7141.604 279.9~296.064192
    2016年12月28日21时38分5.936.720 2140.574 26.2~203.464192
    2017年08月02日02时02分5.136.803 5140.535 28.3~202.661183
    下载: 导出CSV 
    | 显示表格
    表 2  台站基本信息
    Table 2.  Information of selected stations inside and outside Kanto basin
    台站编码位于盆地内外情况纬度/ °经度/ °台站编码位于盆地内外情况纬度/ °经度/ °
    CHBH06盆地内35.721 5140.504 6GNMH12盆地外36.144 0138.912 9
    CHBH10盆地内35.545 8140.241 7GNMH13盆地外36.862 0139.062 7
    CHBH13盆地内35.830 7140.298 0GNMH14盆地外36.493 1139.321 9
    CHBH14盆地内35.734 2140.823 0IBRH06盆地外36.880 9140.654 5
    GNMH05盆地内36.314 3139.184 7IBRH11盆地外36.370 1140.140 1
    GNMH11盆地内36.286 2138.921 0IBRH12盆地外36.836 9140.318 1
    IBRH07盆地内35.952 1140.330 1IBRH13盆地外36.795 5140.575 0
    IBRH10盆地内36.111 2139.988 9IBRH14盆地外36.692 2140.548 4
    IBRH17盆地内36.086 4140.314 0IBRH15盆地外36.556 6140.301 3
    IBRH18盆地内36.363 1140.619 8IBRH16盆地外36.640 5140.397 6
    IBRH19盆地内36.213 7140.089 3KNGH11盆地外35.404 0139.353 9
    IBRH20盆地内35.828 4140.732 3KNGH18盆地外35.643 7139.128 3
    KNGH10盆地内35.499 1139.519 5KNGH19盆地外35.417 3139.043 6
    SITH03盆地内35.899 0139.384 3KNGH20盆地外35.366 3139.126 0
    SITH04盆地内35.802 8139.535 3KNGH21盆地外35.462 8139.214 6
    SITH06盆地内36.113 1139.289 4KNGH22盆地外35.358 3139.091 0
    TCGH06盆地内36.445 8139.950 9NGNH17盆地外36.142 5138.550 4
    TCGH10盆地内36.857 8140.022 5NGNH19盆地外35.973 5138.584 5
    TCGH12盆地内36.695 9139.984 2NIGH19盆地外36.811 4138.784 9
    TCGH13盆地内36.734 2140.178 1SITH05盆地外36.150 9139.050 4
    TCGH15盆地内36.559 5139.863 7SITH07盆地外35.911 8139.148 5
    TCGH16盆地内36.548 0140.075 1SITH08盆地外36.027 4138.969 1
    CHBH11盆地外35.286 7140.152 9SITH09盆地外36.071 5139.099 3
    CHBH12盆地外35.344 5139.855 4SITH10盆地外35.996 4139.219 1
    CHBH15盆地外34.959 1139.788 5SITH11盆地外35.863 7139.272 6
    CHBH16盆地外35.138 4139.964 9TCGH07盆地外36.881 7139.453 4
    CHBH17盆地外35.171 4140.339 8TCGH08盆地外36.882 8139.645 9
    CHBH20盆地外35.088 2140.099 7TCGH09盆地外36.862 5139.836 4
    FKSH05盆地外37.254 4139.872 5TCGH11盆地外36.708 4139.769 4
    FKSH06盆地外37.172 3139.519 9TCGH14盆地外36.550 9139.615 4
    FKSH10盆地外37.161 6140.093 0TCGH17盆地外36.985 3139.692 2
    FKSH13盆地外36.995 1140.585 3TKYH12盆地外35.670 1139.265 0
    GNMH07盆地外36.699 8139.210 4TKYH13盆地外35.701 7139.127 5
    GNMH08盆地外36.491 7138.524 4YMNH11盆地外35.624 7138.977 7
    GNMH09盆地外36.621 2138.906 8YMNH14盆地外35.511 5138.967 5
    GNMH10盆地外36.235 6138.729 1
    下载: 导出CSV 
    | 显示表格
    图 1  震中-台站方位的分布
    Figure 1.  Orientation distribution of earthquake epicenters and stations

    参照Boore等(2012)给出的地震数据处理方法和流程,共处理2 817条三分量地震动记录,其中盆地内台站记录891条,盆地外台站记录1 926条,构建了记录数据库Flatfile文件。对于存在有限断层震源反演结果的事件,台站断层距可直接计算;对于反演结果缺失的事件,断层产状利用Kaklamanos等(2011)提供的方法,结合Global Centroid Moment Tensor(GCMT)解推测得到。数据集的矩震级MW和断层距Rrup、峰值地面加速度PGA及VS30的分布如图2所示。由图2可知,VS30分布大致符合对数正态分布,结合KiK-net台站钻孔数据,参照《建筑抗震设计规范》(GB 50011—2010)(2016年版)(中华人民共和国住房和城乡建设部等,2016),可知选取台站的场地类别多为二类。

    图 2  构建持时数据库中各参数的分布情况
    Figure 2.  Distribution of parameters in constructed duration database

    Ds5-95可直接利用定义计算得到。本文研究Ds5-95的原因为:(1)Ds5-95是随机有限断层模拟方法中的常用持时;(2)Ds5-95可考虑幅值较弱的地震动,能有效计入地震动在盆地内部反复反射、透射的影响(Somerville等,1997)。Ds5-95计算示意及Husid函数如图3所示。

    图 3  Ds5-95计算示意及Husid函数
    Figure 3.  Significant duration Ds5-95 using the Husid plot for acceleration time history

    三分量记录Ds5-95随断层距的分布如图4所示。由图4可知,东西向与南北向地震动持时基本相当,断层距200 km以内持时与断层距大致呈线性关系,断层距200 km以外持时随断层距的增大显著增加,且离散程度显著增加。

    图 4  三分量地震动记录显著持时Ds5-95随断层距Rrup的分布
    Figure 4.  Distribution of significant duration Ds5-95 for three-component ground motion records versus rupture distance Rrup

    基于水平向地震动持时预测方程,包括Kempton等(2006)、Afshari等(2016)和Bahrampouri等(2021)给出的方程,分别简称KS06、AS16、BRG21方程(表3),结合残差分析方法,评估上述方程对竖向地震动持时的预测水平,并分析盆地对三分量地震动持时的影响(仅考虑地壳地震)。

    表 3  3类显著持时预测方程概述
    Table 3.  The summary of three significant duration prediction equations
    项目KS06方程AS16方程BRG21方程
    方程、基础数据
    库及适用范围
    $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}} + {D_{{\rm{site}}}}) $,
    NGA-West1水平向地震动数据库,
    MW为5~7.6级,Rrup为0~200 km
    $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}}) + {D_{{\rm{site}}}} $,NGA-West2水平向地震动数据库,MW为3~8级(其中走滑和逆断层为3~8级,正断层为3~7级),断层距Rrup为0~300 km,VS30为150~1 500 m/s,Z1.0为0~3 km $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}}) + {D_{{\rm{site}}}} $,日本KiK-net水平向地震动数据库,MW为4~7.5级,断层距Rrup为0~200 km,VS30为150~1 500 m/s,Z1.0为0~400 km
    震源项 $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \,\Delta \sigma = \exp [{b_1} + {b_2}(M - {M^*})] $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    ${D_{ {\rm{source} } } } = f_{\rm{c}}^{ - 1}$
    $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \Delta \sigma = \left\{ \begin{gathered} \exp [{b_1} + {b_2}(M - {M^*})],\,\;M \leqslant {M_2} \\ \exp [{b_1} + {b_2}({M_2} - {M^*}) \\ + {b_3}(M - {M_2})],\,\,\,M > {M_2}\; \\ \end{gathered} \right. $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    ${D_{\rm{source} } } = \left\{ \begin{gathered} \;\;\;1/{f_{\rm{c}}},\;\;M > {M_1} \\ \,\,\,\,\,\,\,\,{b_0},\;\;\;\,M \leqslant {M_1}\;\; \\ \end{gathered} \right.$
    $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \Delta \sigma = \exp ({b_1} + {b_2}M) $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    $ \ln {D_{{\rm{source}}}} = {10^{{m_1}(M - {m_2})}} + {m_3} $
    路径项 $ {D_{{\rm{path}}}} = {c_2}{R_{{\rm{rup}}}} $ $ {D_{{\rm{path}}}} = \left\{ \begin{gathered} {c_1}{R_{\rm{rup}}},\,{R_{\rm{rup}}} \leqslant {R_1} \\{c_1}{R_1} + {c_2}({R_{\rm{rup}}} - {R_1}),\;{R_1}\; < {R_{\rm{rup}}} \leqslant {R_2}\; \\ {c_1}{R_1} + {c_2}({R_2} - {R_1}) \\ + {c_3}({R_{\rm{rup}}} - {R_2}),\;{R_{\rm{rup}}}\; > {R_2} \\ \end{gathered} \right. $ ${D_{path} } = \left\{ \begin{gathered}{r_1} \cdot {R_{rup} },\;{R_{rup} } \leqslant {R_1} \\{r_1} \cdot [{R_1} + MSE({R_{rup} } - {R_1})],\;{R_{rup} } > {R_1}\end{gathered} \right.$
    $ MSE = \left\{ \begin{gathered}0,\; M \leqslant {M_1} \\\frac{ {M - {M_1} } }{ { {M_2} - {M_1} } },\;{M_1} < M \leqslant {M_2} \\1,\;M > {M_2} \\\end{gathered} \right. $
    场地项 二元场地模型:$ {D_{{\rm{site}}}} = {c_1}S $,S取值为
    0或1;VS30模型:$ {D_{{\rm{site}}}} = {c_4} + {c_5}{V_{{\rm{S}}30}} $;
    VS30与盆地深度的综合模型:$ {D_{{\rm{site}}}} = {c_4} + {c_5}{V_{{\rm{S}}30}} + {c_6} + {c_7}{Z_{1.5}} $
    ${D_{{\rm{site}}} } = \left\{ \begin{gathered} {c_4}\ln \left( {\frac{ { {V_{{\rm{S}}30} } } }{ { {V_{{\rm{ref}}} } } }} \right) + {F_{\delta {Z_1} } }\;\;\;{V_{{\rm{S}}30} } \leqslant {V_1} \\ {c_4}\ln \left( {\frac{ { {V_1} } }{ { {V_{{\rm{ref}}} } } }} \right) + {F_{\delta {Z_1} } }\;\;\;{V_{{\rm{S}}30} } > {V_1}\;\; \\ \end{gathered} \right.$
    ${F_{\delta {Z_1} } } = \left\{ \begin{gathered} \;{c_5}\delta {Z_1}\;\;\;\;\;\delta {Z_1} \leqslant \delta {Z_{1,{\rm{ref}}} } \\ {c_5}\delta {Z_{1,{\rm{ref}}} }\;\;\;\delta {Z_1} > \delta {Z_{1,{\rm{ref}}} } \\ \end{gathered} \right.$
    $ \delta {Z_1} = {Z_1} - {\mu _{Z1}} $
    $\begin{gathered} \ln ({\mu _{Z1} }) \\ = \frac{ { - 5.23} }{2}\ln \left( {\frac{ {V_{{\rm{S}}30}^2 + { {412.39}^2} } }{ { { {1360}^2} + { {412.39}^2} } } } \right) - \ln 1000 \\ \end{gathered}$
    $\begin{gathered} {D_{{\rm{site}}} } = {s_1}\ln \left( {\frac{ {\min ({V_{{\rm{S}}30} },600)} }{ {600} } } \right) \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {s_2}\min (\delta {Z_1},250)\, + {s_3} \\ \end{gathered}$
    ${Z_{1,P} } = \exp \left[ - \dfrac{ {5.23} }{2}\ln \left( {\dfrac{ {V_{ {\rm{S} }30}^2 + { {412}^2} } }{ { { {1360}^2} + { {412}^2} } } } \right) - 0.9 \right]$$ \delta {Z_1} = {Z_1} - {Z_{1,P}} $
    方程系数 $ {b_1},{b_2},{c_1},{c_2},{c_4},{c_5},{c_6},{c_7},{M^*} $系数参见Kempton等(2006)的研究 $ {b_0},{b_1},{b_2},{b_3},{c_1},{c_2},{c_3},{c_4},{c_5} $和
    ${M^*},{M_1},{M_2},{R_1},{R_2},{V_1},\delta {Z_{1,{\rm{ref}}} }$系数参见Afshari等(2016)的研究
    $ {b_1},{b_2},{m_1},{m_2},{r_1},{R_1},{s_1},{s_2},{s_3} $系数参见Bahrampouri等(2021)的研究
    注:为表述统一,3个持时预测方程中震源、路径、场地项符号与原文略有差异。M为震级,一般取矩震级MW,注意KS06方程中,当无可用的矩震级时,6级以上使用面波震级MS,6级以下使用地方震级MLRrup为断层距,为场点或台站到断层的最近距离,单位km;VS30为地面以下30 m平均剪切波速,单位m/s;z1为地面到剪切波速为1 km/s等值面的深度,单位km;Z1.5为地面到剪切波速为1.5 km/s等值面的深度,单位km;μZ1Z1,P均为根据VS30预测的Z1值,其在AS16方程中的单位为km,在BRG21方程中的单位为m; fc为拐角频率,单位Hz;Δσ为应力降指标,单位为bar;M0为地震矩,单位为dyne-cm;β为震源处剪切波速,单位km/s,本研究取3.2 km/s。
    下载: 导出CSV 
    | 显示表格

    本文采用Baltay等(2017)给出的地震动参数残差分析方法,将持时总残差$ {\delta _{ij}} $定义为记录持时$ {y_{ij}} $和预测持时$ {Y_{ij}} $的自然对数差:

    $$ {\delta _{ij}} = \ln {y_{ij}} - \ln {Y_{ij}} $$ (1)

    式中,i表示第i次地震事件,j表示记录到这个事件的第j个台站。

    将总残差区分为事件间残差$ \delta {E_i} $和事件内残差$ \delta {W_{ij}} $

    $$ \delta {E_i} = \frac{1}{{{N_i}}}\sum\limits_{j = 1}^{{N_i}} {{\delta _{ij}}} $$ (2)
    $$ \delta {W_{ij}} = {\delta _{ij}} - \delta {E_i} $$ (3)

    与Baltay等(2017)给出的地震动参数残差分析方法不同,为更合理地再现盆地内、外地震动持时差异,仅采用盆地外台站的总残差计算事件间残差。利用不同预测方程计算得到的事件间残差随震级的变化分布如图5所示。事件间残差大于(小于)0表示实测值高于(低于)预测值,事件间残差=0表示实测值与预测值相当。由图5可知,3个方程对应水平向(EW向和NS向)持时的事件间残差相当,且无明显随震级变化的趋势,其中KS06和AS16方程均低估了盆地外水平向地震动持时,但BRG21方程略微高估了盆地外水平向地震动持时,这可能是由于BRG21方程在构建其基础方程(将去掉盆地效应项的BRG21方程称为其基础方程)时未对盆地内、外记录进行区分;3种方程对应竖向(UD向)持时的事件间残差多为正值;3种方程直接应用于盆地外竖向地震动持时预测时,均存在预测值偏低的问题。

    图 5  不同持时预测方程显著持时Ds5-95的事件间残差随矩震级的变化
    Figure 5.  The inter-event residual and of significant duration Ds5-95 versus moment magnitude MW in different duration ground motion prediction equations

    3种方程得到的事件内残差及其分组均值±1倍标准差随断层距的变化(分组间隔距离为20 km)如图6所示。其中,事件内残差>0表明实测持时偏大,即预测持时偏小;事件内残差<0表明实测持时偏小,即预测持时偏大;事件内残差=0表明实测值与预测值相近。由图6可知,对于KS06和AS16方程,盆地内三分量记录的事件内残差较盆地外台站对应的残差大,且多大于0,说明盆地内持时大于盆地外持时;对于BRG21方程,盆地内、外三分量记录的事件内残差区别较KS06和AS16方程小,表明BRG21方程对盆地内、外台站的地震动持时预测相当,且效果更好;AS16方程对应的残差有随距离变化的趋势,表明该方程的路径项可能不适用于研究区域,需注意由于在Rrup<20 km和Rrup>250 km范围内的地震数据较少,计算得到的事件内残差可能不可靠。

    图 6  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随断层距的变化
    Figure 6.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus rupture distance Rrup in different duration ground motion prediction equations

    3种方程得到的Ds5-95对应的事件内残差及其分组均值±1倍标准差随矩震级的变化如图7所示。由图7可知,3种方程得到的盆地外三分量记录的事件内残差均接近于0,且不随震级发生变化,原因在于事件间残差是基于盆地外台站记录计算的;3种方程得到的盆地内的竖向持时总体上大于盆地外的竖向持时;3种方程得到的盆地内三分量记录事件间残差均在矩震级为6.2级左右达最大值,在矩震级达6.2级之前残差逐渐上升,在矩震级达6.2级之后残差不变或下降;当矩震级<6.0级时,KS06方程得到的水平向持时事件内残差均值接近于0,而AS16和BRG21方程得到的水平向持时事件内残差均值均<0;当矩震级>6.0级时,3种方程得到的盆地内三分量记录事件内残差均值均>0。总体来说,盆地内水平持时预测值在较小震级的情况下存在预测值偏高的问题,而在较大震级的情况下存在预测值偏低的问题,且竖向持时预测值整体偏低,这表明盆地对持时的影响不可忽略,尤其是对于强震而言。

    图 7  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随矩震级的变化。
    Figure 7.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus moment magnitude Mw in different duration ground motion prediction equations

    3种方程得到Ds5-95对应的事件内残差及其分组均值±1倍标准差随VS30的变化如图8所示。由图8可知,盆地内台站的VS30小于盆地外台站,除个别VS30>760 m/s的台站外,3种方程对应的盆地外台站竖向地震动持时事件内残差均较小,且基本不随VS30发生变化,这与浅表场地对竖向地震动影响较弱一致;但盆地内、外台站水平向地震动事件内残差均随着VS30的增加先减小后趋于稳定或变大,其中对于KS06方程,VS30较小台站的水平向地震动事件内残差较AS16和BRG21方程所得结果显著偏大,且实测值大于预测值。

    图 8  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随VS30的变化
    Figure 8.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus VS30 in different duration ground motion prediction equations

    3种方程得到的事件内残差及其分组均值±1倍标准差随Z2.5的变化分布如图9所示。已有持时预测方程中采用Z1.0,但由于该参数与VS30相关程度较高,导致场地效应项与盆地效应项难以解耦。为此,分析事件内残差随Z2.5的变化,以期后续利用Z2.5构建持时预测方程的盆地效应项。由图9可知,3种方程对应事件内残差均大致随Z2.5的增加而增加,但趋势不明显。综合对比图79可知,Z2.5对事件内残差的影响较显著,震级和VS30对残差的影响较小。事件可能受本文数据库相对较少的影响,Z2.5对事件内残差的影响规律不明显。

    图 9  不同持时预测方程显著持时Ds5-95的事件内残差及同一Z2.5值对应的残差均值随Z2.5的变化
    Figure 9.  The intra-event residual and mean residual of the same Z2.5 value of significant duration Ds5-95 versus Z2.5 in different duration ground motion prediction equations

    本文利用关东盆地及其周边KiK-net台网井上台站记录到的2004—2017年15次中强地震(矩震级为5.1~6.9级),构建了三分量记录Ds5-95持时数据库,据此基于残差分析方法和3种水平向地震动持时参数预测方程,计算并给出了事件间残差和事件内残差及其随不同类别参数的变化。在此基础上,初步探讨了水平向地震动持时预测方程应用于预测竖向地震动持时的可行性及盆地对三分量地震动持时的影响,得出以下结论:

    (1)就水平向地震动而言,KS06、AS16、BRG21方程均可实现对本文Ds5-95数据的较合理估计。依据事件间残差结果可知,KS06、AS16方程整体低估了盆地外Ds5-95,尤其是对于矩震级<6.2级的情况,BRG21方程高估了盆地外Ds5-95。值得注意的是,AS16方程得到的事件间残差随震级和距离的增大持续增大,这表明AS16方程不适用于关东盆地区域。根据事件内残差分析结果可知,KS06、AS16方程对VS30<360 m/s的场地预测值偏低。对于大震级情况,KS06、AS16、BRG21方程对盆地内场地均存在预测值偏低的问题,但低估程度与目前常用盆地表征参数Z2.5的关系需进一步分析。盆地对水平向地震动持时的影响不容忽视,目前持时预测方程中盆地效应项的合理性有待进一步论证。

    (2)就竖向地震动而言,KS06、AS16、BRG21方程均不能直接应用于竖向地震动。3种方程的预测值均显著偏低,矩震级>6.2级时尤为显著。事件间残差和事件内残差随震级的增大而增加。事件内残差与RrupZ2.5VS30之间的关系无明显规律。对于同一地震事件中震源-台站距离相当的情况,竖向地震动持时整体大于水平向地震动,这与刘浪等(2011)针对汶川地震开展的记录持时研究结论一致。为此,假定水平向与竖向地震动持时相当是不合理的。水平向地震动持时数据构建的持时预测方程不能直接应用于竖向地震动持时预测,且二者比值并不为常数。实现对竖向地震动持时的合理预测,需利用竖向地震动数据构建持时预测方程。

    综上所述,在持时应用中应考虑盆地对持时的影响,同时考虑水平向与竖向地震动持时的差异。本文构建的持时数据库存在以下不足:①只考虑了矩震级为5.1~6.9级的中强地震;②震中-台站方位角覆盖范围过于集中;③台站数不够,仅考虑了关东盆地内的KiK-net井上台站,且去除了该盆地中心VS30数据中存在争议的部分台站,未考虑区域内K-NET台站。本文得到的结论仍需结合大量地震动记录加以验证和量化。

  • 图  1  沉管隧道多尺度模型

    Figure  1.  Multi-scale model of immersed tunnel

    图  2  抗震韧性评价方法模型(Bruneau,2007

    Figure  2.  Assessing model of seismic resilience (Bruneau, 2007

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  沉管隧道纵向地震易损性曲线

    Figure  4.  Longitudinal seismic fragility curves of immersed tunnel

    图  5  隧道性能恢复函数(FEMA,2020

    Figure  5.  Tunnel restoration curves (FEMA, 2020

    图  6  不同PGA下沉管隧道性能恢复曲线

    Figure  6.  Resilience curves of the recovery of functionality with time for immersed tunnel with different PGAs

    图  7  沉管隧道抗震韧性指数

    Figure  7.  Resilience index of immersed tunnel

    图  8  不同土-结构相对刚度比下沉管隧道抗震韧性指数

    Figure  8.  Resilience index with different soil-structure relative stiffness ratios

    表  1  损伤状态定义

    Table  1.   Definitions of Each Damage State

    损伤状态损伤指标范围
    正常使用管节接头相对张合量≤2 cm,最大错台量≤0.5 cm,M/MRd≤1
    轻微破坏管节接头相对张合量≤4 cm,最大错台量≤1 cm,M/MRd≤1.5
    中等破坏M/MRd≤2.5
    严重破坏M/MRd≤3.5
    下载: 导出CSV

    表  2  韧性等级划分(Huang等,2022

    Table  2.   Definitions of resilience grade(Huang et al., 2022

    韧性等级韧性指数R范围
    0.9≤R<1
    0.6≤R<0.9
    R<0.6
    下载: 导出CSV
  • 路德春, 马超, 杜修力等, 2022. 城市地下结构抗震韧性研究进展. 中国科学: 技术科学, 52(10): 1469—1483 doi: 10.1360/SST-2021-0013

    Lu D. C. , Ma C. , Du X. L. , et al. , 2022. Earthquake resilience of urban underground structures: state of the art. Scientia Sinica Technologica, 52(10): 1469—1483. (in Chinese) doi: 10.1360/SST-2021-0013
    邱大鹏, 2019. 大跨度地下框架结构地震响应与减震控制措施. 大连: 大连理工大学.

    Qiu D. P., 2019. Seismic responses and control measures of underground large scale frame structures. Dalian: Dalian University of Technology. (in Chinese)
    王涛, 2021. 建筑抗震韧性评价研究进展. 城市与减灾, (4): 33—38.
    禹海涛, 吴胤翔, 涂新斌等, 2020. 盾构隧道纵向地震响应的多尺度分析方法. 中国公路学报, 33(1): 138—144, 152 doi: 10.19721/j.cnki.1001-7372.2020.01.014

    Yu H. T. , Wu Y. X. , Tu X. B. , et al. , 2020. Multi-scale method for longitudinal seismic response analysis of shield tunnels. China Journal of Highway and Transport, 33(1): 138—144, 152. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2020.01.014
    禹海涛, 宋毅, 李亚东等, 2021. 沉管隧道多尺度方法与地震响应分析. 同济大学学报(自然科学版), 49(6): 807—815

    Yu H. T. , Song Y. , Li Y. D. , et al. , 2021. Multi-scale method and seismic response analysis of immersed tunnel. Journal of Tongji University (Natural Science), 49(6): 807—815. (in Chinese)
    禹海涛, 李心熙, 袁勇等, 2022. 沉管隧道纵向地震易损性分析方法. 中国公路学报, 35(10): 13—22

    Yu H. T. , Li X. X. , Yuan Y. , et al. , 2022. Seismic vulnerability analysis method for longitudinal response of immersed tunnels. China Journal of Highway and Transport, 35(10): 13—22. (in Chinese)
    袁万城, 王思杰, 李怀峰等, 2021. 桥梁抗震智能与韧性的发展. 中国公路学报, 34(2): 98—117 doi: 10.19721/j.cnki.1001-7372.2021.02.002

    Yuan W. C. , Wang S. J. , Li H. F. , et al. , 2021. Development of intelligence and resilience for bridge seismic design. China Journal of Highway and Transport, 34(2): 98—117. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2021.02.002
    中华人民共和国交通运输部, 2020. JTG 2232—2019 公路隧道抗震设计规范. 北京: 人民交通出版社.

    Ministry of Transport of the People’s Republic of China, 2020. JTG 2232—2019 Specifications for seismic design of highway tunnels. Beijing: China Communications Press. (in Chinese)
    庄海洋, 付继赛, 朱明轩等, 2019. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析. 隧道与地下工程灾害防治, 1(3): 57—67

    Zhuang H. Y. , Fu J. S. , Zhu M. X. , et al. , 2019. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns. Hazard Control in Tunnelling and Underground Engineering, 1(3): 57—67. (in Chinese)
    Alipour A. , Shafei B. , 2016. Seismic resilience of transportation networks with deteriorating components. Journal of Structural Engineering, 142(8): C4015015. doi: 10.1061/(ASCE)ST.1943-541X.0001399
    Anwar G. A. , Dong Y. , Zhai C. H. , 2020. Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7): 1454—1472. doi: 10.1177/1369433219895363
    Argyroudis S. A. , Pitilakis K. D. , 2012. Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering, 35: 1—12. doi: 10.1016/j.soildyn.2011.11.004
    Bocchini P. , Frangopol D. M. , 2012. Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment. Journal of Bridge Engineering, 17(1): 117—129. doi: 10.1061/(ASCE)BE.1943-5592.0000201
    Bruneau M. , Chang S. E. , Eguchi R. T. , et al. , 2003. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4): 733—752. doi: 10.1193/1.1623497
    Bruneau M. , Reinhorn A. , 2007. Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1): 41—62. doi: 10.1193/1.2431396
    Chen Z. Y. , Zhou Y. , 2019. Seismic performance of framed underground structures with self-centering energy-dissipation column base. Advances in Structural Engineering, 22(13): 2809—2822. doi: 10.1177/1369433219852043
    Cimellaro G. P. , Reinhorn A. M. , Bruneau M. , 2010. Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11): 3639—3649. doi: 10.1016/j.engstruct.2010.08.008
    Dong Y. , Frangopol D. M. , 2015. Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83: 198—208. doi: 10.1016/j.engstruct.2014.10.050
    FEMA, 2020. Hazus earthquake model technical manual, Hazus 4.2 SP3. (2020-10)[2022-10-31]. https://www.fema.gov/flood-maps/tools-resources/flood-map-products/hazus/user-technical-manuals
    Huang Z. K. , Zhang D. M. , Pitilakis K. , et al. , 2022. Resilience assessment of tunnels: framework and application for tunnels in alluvial deposits exposed to seismic hazard. Soil Dynamics and Earthquake Engineering, 162: 107456. doi: 10.1016/j.soildyn.2022.107456
    Liu T. , Chen Z. Y. , Yuan Y. , et al. , 2017. Fragility analysis of a subway station structure by incremental dynamic analysis. Advances in Structural Engineering, 20(7): 1111—1124. doi: 10.1177/1369433216671319
    Ma C. , Lu D. C. , Du X. L. , 2018. Seismic performance upgrading for underground structures by introducing sliding isolation bearings. Tunnelling and Underground Space Technology, 74: 1—9. doi: 10.1016/j.tust.2018.01.007
    St John C. M. , Zahrah T. F. , 1987. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 2(2): 165—197. doi: 10.1016/0886-7798(87)90011-3
    Wang J. N., 1993. Seismic design of tunnels: a state-of-the-art approach. New York: Parsons Brinckerhoff Quade & Douglas.
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  167
  • PDF下载量:  44
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-11-03
  • 刊出日期:  2023-03-31

目录

/

返回文章
返回