• ISSN 1673-5722
  • CN 11-5429/P

2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析

木妮拉·局玛洪 艾力夏提·玉山 李瑞 刘代芹 朱治国 陈丽

和锐, 张翼, 张鹤翔, 冯义钧, 高杰, 纪翠玲, 卢海燕, 刘红俊. 地震标准化工作平台的设计与实现[J]. 震灾防御技术, 2019, 14(4): 899-906. doi: 10.11899/zzfy20190421
引用本文: 木妮拉·局玛洪,艾力夏提·玉山,李瑞,刘代芹,朱治国,陈丽,2022. 2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析. 震灾防御技术,17(3):549−556. doi:10.11899/zzfy20220314. doi: 10.11899/zzfy20220314
He Rui, Zhang Yi, ZHANG Hexiang, Feng Yijun, Gao Jie, Ji Cuiling, Lu Haiyan, Liu Hongjun. Design and realization of Seismological Standardization Work Platform[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 899-906. doi: 10.11899/zzfy20190421
Citation: Munila Jumahong, Ailixiati Yushan, Li Rui, Liu Daiqin, Zhu Zhiguo, Chen Li. Analysis on InSAR Co-seismic Deformation and Slip Distribution Characteristics of 2020 Jiashi MS 6.4 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 549-556. doi: 10.11899/zzfy20220314

2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析

doi: 10.11899/zzfy20220314
基金项目: 新疆维吾尔自治区自然科学基金(2020D01A85、2022D01A106、2022D01B44);地震科技星火计划(XH22007YA、XH20069Y);新疆维吾尔自治区重点研发项目(2020B03006-2);新疆地震科学基金(202113、202114)
详细信息
    作者简介:

    木妮拉·局玛洪,女,生于1983年。硕士,助理工程师。主要从事地震监测工作。E-mail:48792708@qq.com

    通讯作者:

    艾力夏提·玉山,男,生于1984年。高级工程师。主要从事地壳形变与地震重力研究工作。E-mail:irxat@163.com

Analysis on InSAR Co-seismic Deformation and Slip Distribution Characteristics of 2020 Jiashi MS 6.4 Earthquake

  • 摘要: 利用Sentinel-1A升轨和降轨数据,基于D-InSAR技术,获取2020年1月19日伽师MS6.4地震同震形变场,并结合其他研究机构给出的震源机制解参数和已有研究成果,反演得到伽师地震的发震断层几何特征和滑动分布。研究结果表明,伽师地震同震形变在地表有明显差异;升轨同震形变在卫星视线方向北侧抬升55 mm,南侧下降42 mm;降轨同震形变在卫星视线方面北侧抬升63 mm,南侧下降23 mm。通过反演得到发震断层走向为275°,倾角为20°,地震滑动主要分布在地下5 km处,最大滑动量约为0.32 m,平均滑动角为89.3°,累积地震矩为1.46×1018 N·m,合矩震级MW6.1,发震构造为具有少量走滑性质的逆冲断裂。从发震构造特征、同震滑动分布推测,伽师地震发震构造是柯坪塔格褶皱带滑脱面以上沉积盖层内的逆冲断裂,支持了柯坪推覆体的薄皮构造模型观点。
  • 互联网在我国的快速发展为地震标准化发展提供了良好契机。地震标准化是一项系统性工程,通过建立一整套良好的规则协调地震标准化系统中的各部分,使其成为有机整体。利用互联网技术,搭建地震标准化工作平台,将已建立的良好规则实体化,确保系统规范化、高效化运转,进而实现系统各部分资源的充分共享。目前,一批与防震减灾相关的工作平台已搭建完成,如甘肃地震信息微信服务平台(蒲举等,2019)、云南地震信息综合服务平台(许瑞杰等,2019)、国家地震应急救援物资综合管理平台建设(蔺冲等,2018)等。

    “标准化”活动是人类社会中每天都在进行的诸多活动中的一种(白殿一等,2009)。在这种活动中,存在不同的服务或管理对象、多套工作流程和多个工作环节、丰富的信息资源等。参与者既希望任务简单、便捷化,也希望过程规范、高效,并能方便获取有用信息。搭建地震标准化工作平台可将事务性的繁杂工作交给计算机后台处理;可将使用者和信息进行分类,在使用过程中为不同使用者显示或推送相关信息;使用者可随时随地获取有用信息。

    此外,现今社会化大生产方式对标准管理提出了新的要求,要求标准化管理体制由孤立分散的企业和行业标准管理转变为与生产建设系统及整个国民经济管理系统相协调的国家标准管理体系,并融入国际标准化管理网络,即国际标准化管理体系(洪生伟,2012)。孤立分散的企业和行业搭建自己的工作平台是融入国家标准化管理委员会的管理及与国际标准化管理体系接轨的一种切实可行的方法。

    目前,国家鼓励各标委会建立自己的标准化信息服务平台。2015年,纲领性文件《国务院关于印发深化标准化工作改革方案的通知》《国务院办公厅关于印发国家标准化体系建设发展规划(2016-2020)的通知》。在落实标准化改革方案中,突出信息建设对标准化工作改革的支撑作用。《国务院办公厅关于印发贯彻实施 < 深化标准工作改革方案>行动计划(2015-2016年)的通知》,第5点提出“建立完善企业产品和服务标准化公共服务平台”,第10点提出“加强信息化建设。按照积极稳妥、分步实施的原则,推进跨部门、跨行业、跨区域标准化信息交换与资源共享,规划建设统一规范的全国标准信息网站,为社会提供服务”(程宁,2019)。

    (1)安全性:安全性是平台建设首要考虑的因素。平台必须具有一定的诊断、测试手段、监测能力,尽可能早发现并避免平台数据泄露、被篡改等。提供多种后备措施,当平台发生问题时对数据进行有效备份和恢复。

    (2)规范化:平台设计应与本行业现行法律法规及规章制度一致,并与实际工作流程一致。如果存在多级管理,还应考虑上下级衔接的问题,在各层级中预留软件接口。规范化是确保效率、实用及平台开放性的基础。

    (3)多元化:平台应通过多种途径提供服务和操作,尽可能将先进、实用的技术纳入到平台建设中,如手机、微信、微信公众号、二维码等,可减少空间和时间对用户和管理者的限制,简化过程、提高效率。

    (4)自动化:搭建平台可规范化过程,并自动处理部分工作,减少用户和管理的工作量,提高工作效率。如果平台中使用人工智能技术,学习用户的需求和使用习惯,可更好地为用户提供服务。平台建设还可完成部分事务性工作,如部分信息自动更新、进度管控、信息提示、数据统计等,减少管理者的工作量。

    (5)易用性:对于用户群体,使用平台时可考虑不同用户群体的使用习惯和信息需求倾向,提供特定的信息和界面,突出特定信息,减少操作流程,简单、快速地获取服务。对于特定用户,当条件允许时,可通过人工智能了解用户使用习惯,定制个性服务。

    地震标准工作平台采用5层架构模式,分别为支撑层、数据层、逻辑层、应用层和用户层,如图 1所示。

    图 1  地震标准工作平台整体架构
    Figure 1.  The architecture of seismological standardization work platform

    (1)支撑层

    支撑层提供保障整个平台良好运行的软硬件和网络环境,包括硬件环境和软件环境两部分。支撑层软硬件参数的选取以保证在实际应用中的极端情况下系统运行稳定和安全为依据,这种极端情况不能过分追求极端而偏离实际,避免资源的浪费。根据以往工作经验,假设了一种极端情况,即全国地震标准化技术委员会全体委员在线投票,同时开展地震标准项目立项(假设50人)和征求意见工作(假设50人),100名关心地震标准化工作的公众同时在线,按照近200人同时在线的情况配置系统运行的软硬件环境。

    硬件环境包括2台服务器,1台用于数据库服务,1台用于应用服务器,4U×8核,64G内存,4个千兆自适应网卡。1套网络接入设备,包括核心交换机1、防火墙和入侵防御。1套存储、备份设备,用于平台存储系统,双控制器,16G数据缓存,8个8G光纤通道接口,1块600G 2.5寸SAS硬盘,标准软件包,3年备件服务。

    软件环境包括操作系统、应用服务器、数据库软件。平台依据安全及性能最优原则,操作系统主要采用Linux系统,Linux系统采用CentOS 7.3及以上。为满足更大的吞吐及并发量,平台采用Tomcat 7及以上版本应用服务器。平台数据库软件采用较为稳定的MySQL 5及以上版本,并配置相关热备方案,实现数据库的安全备份机制。

    硬件环境和软件环境既可自己搭建,也可通过购买云服务获得。实际操作中,购买云服务切实可行,在保证质量的同时,减少了硬件购置、运行管理和系统申级更新等成本。

    (2)数据层

    数据层是整个数据库系统的数据资源,提供数据存储和管理能力。除标准文本等少量数据以文本形式存放外,其他数据资源均采用关系数据MySQL进行存储、维护和管理。按照数据类型、用途等,创建25张数据库表用于存储和管理数据资源,如表 1所示。

    表 1  地震标准化工作平台数据库表清单
    Table 1.  The database table list of seismological standardization work platform
    表英文名 表中文名 表英文名 表中文名 表英文名 表中文名
    Abolish 废止库表 Person_R_Organization 人员组织关系表 ProjectStatus 项目状态表
    Committee 委员表 PersonStandard 标准参与经历表 Role 角色表
    Example 审批流程实例表 PersonStandard_R_Person 标准参与经历人员关系表 Vote 投票表
    Expert 专家表 PilotStudy 预研项目表 Standardization 标准库表
    Node 流程节点表 PilotStudy_R_Person 预研项目人员关系表 User 用户表
    Organization 组织表 PilotStudy_R_Project 预研项目与标准项目关系表 User_R_Role 用户角色关系表
    Permission 权限表 Process 审批流程进程表 Workflow 审批流程表
    Permission_R_Role 权限角色关系表 Project 标准化项目表
    Person 人员信息表 Project_R_Person 标准化项目人员关系表
    下载: 导出CSV 
    | 显示表格

    (3)逻辑层

    逻辑层是系统的核心,是构成应用的基础, 包括数据浏览、数据查询、数据统计、消息推送、立项管理、起草管理、咨询管理、审查管理、发布管理、出版管理、复审管理、废止管理、表单管理、用户管理、权限管理、日志管理等。逻辑层处于数据层和应用层之间,为应用层功能的实现提供了接口函数。如用户通过应用层查询某类标准信息时,先调用逻辑层相应的接口函数。逻辑层调用数据层数据,根据参数按照标准属性、适用范围、系列标准、相关标准、时间、标准的强制或推荐性质等查询和计算,如图 2所示。应用层根据返回的数据,组织数据并向用户以某种形式显示。

    图 2  地震标准查询示意
    Figure 2.  Seismic standard inquiry

    (4)应用层

    应用层是面向用户的系统,实现项目管理、环节管理、进度管控、归档管理、系统管理等功能。应用层直接面向用户,其设计质量直接影响平台的易用性。应用层根据用户类别和权限、使用习惯和信息需求倾向,提供特定的信息和界面,突出特定信息,减少操作流程,使用户能简单、快速地获取服务,如平台的管理者和地震标准项目申请者的需求不一样,前者往往更重视地震标准化的综合信息,包括地震标准数据、项目完成情况、不同领域标准数量和使用情况、委员完成任务情况等综合信息;后者更关心项目申报、进度和现阶段及下阶段需完成的任务等,同样是项目申请者,当项目进展到不同阶段时,希望平台显示的信息和内容不一样。

    (5)用户层

    用户层主要根据用户信息,定制个性服务,调用不同的应用界面,供用户使用。地震标准化工作平台将应用分为系统管理员和一般用户。系统管理员实现对系统的维护和管理,包括存储管理、权限管理、配置管理、日志管理等。一般用户包括一般使用者、项目申请人、委员会委员、专家、秘书处和分领域技术委员会秘书处人员、地震标准化工作管理部门等。

    为满足地震标准管理需求,工作平台分为系统首页、项目立项管理、项目起草管理、项目咨询管理、项目审查管理、项目发布管理、项目出版管理、项目复审管理、项目废止管理、系统管理10大模块,如图 3所示。整个平台起承前启后的核心作用,实现地震标准立项、征求意见到报批等各环节的进度管控、上报、复核等管理功能;建立与中国标准化技术委员会管理平台的接口,实现地震国家标准、工作总结等自动上报等功能。

    图 3  地震标准工作平台功能模块
    Figure 3.  Seismological Standardization work platform function block

    项目构建技术标准从立项、起草、征求意见、审查、批准发布、出版、复审、废止的全流程分类管理,实现各管理阶段信息分类管理及整体流程的总体把控,实现系统操作日志、信息流转记录、审查论证记录等相关信息的存储与统计,为后续专家委员评估、标准效益评估提供服务及依据。

    项目建成后,实现与国家标准管理系统的对接,实现工作平台相关信息与国家标准管理系统的同步更新,对接方式目前还在调研中,可利用国家标准管理系统提供的后台接口直接实现互联互通,或通过工作平台导出相关记录,然后直接导入国家标准管理系统,减轻多套管理流程并行的工作压力。

    (1)系统首页:包含相关信息的统计(如新立项、已发布、已出版等)、相关项目进度概览、待办事项概览、我的消息等模块。

    (2)项目立项管理:针对标准申请者完成项目申请人信息填报、项目立项材料上报;针对管理者提供申请项目申请清单、摘要、初选、委员投票,将项目申请人信息导入人才库。

    (3)项目起草管理:标准负责人设置项目进度节点。

    (4)项目咨询管理:实现从地震人才数据库和地震标准化技术委员会委员库挑选相关专业的专家人员,供管理者挑选成立专家组,向专家组推送标准文本、通知。委员实现手机APP在线回复等。将新增专家导入人才库。

    (5)项目审查管理:基本功能类似征求意见阶段。

    (6)项目发布管理:标准批准发布后,自动更新地震标准化信息库。由于采用动态网页,地震标准化服务平台查询结果也将自动更新。

    (7)项目出版管理:自动分配地震标准编号,地震标准向出版社发送电子邮件。

    (8)项目复审管理:提供标龄到达复审年限的标准清单,根据管理者的指令发起标准复审,复审结果更新地震标准化信息库。

    (9)项目废止管理:复审结果为废止的,更新地震标准化信息库。

    (10)系统管理:面向系统管理员,实现对系统的维护和管理,包括存储管理、权限管理、配置管理、日志管理等。

    地震标准化技术委员会数据库采用关系数据MySQL对数据进行分布式存储、维护和管理,为应用实现提供数据支撑,包括地震标准化人才库、地震标准化技术委员会委员信息库、地震标准化信息库、地震标准项目库、地震标准化管理库等,映射为应用层不同的功能。地震标准化人才库可实现分领域和专业查询、邮寄电子邮件、打印通讯地址等功能,为征求意见、审查及委员遴选等提供数据支撑。地震标准化技术委员会委员信息库可实现向委员推送信息、委员在线投票和征求意见等,并为投票统计及委员考核等提供数据支撑。地震标准化信息库可实现按地震标准属性、范围、领域、时间、起草人等实现查询。地震标准项目库为实现项目进度管控、信息查询、修改提供数据支撑。地震标准化管理库为地震综合信息查询提供数据支撑。

    地震标准化工作平台作为系统性工程,必须结合地震标准化工作的特点和软件工程的规范,有计划、有目标地实施。考虑系统安全性、规范性、易用性等要求,在软件配置方面尽量考虑技术上较为成熟和通用的产品,采用以下技术路线:

    (1)采用B/S架构进行系统开发;

    (2)按照行业内各项技术规定组织数据内容,建立数据结构模型;

    (3)基于成熟的对象关系型空间数据库引擎,实现各种数据一体化无缝建库、管理;

    (4)平台架构、功能、界面的设计主要依据现行的《标准化法》《地震标准化管理办法》 《地震标准化制修订工作管理细则》等规章制度;

    (5)采用面向对象的设计思想,在需求分析抽象的基础上,进行软件功能组件的设计;

    (6)采用索引和分块技术,提高数据访问速度。

    整个平台基于B/S架构(浏览器和服务器架构)模式开发。B/S架构最大的优点是使用者可在任何地方进行操作,无需安装任何专门的软件,只要有1台能上网的电脑即可使用,客户端零安装、零维护,系统的扩展非常容易。

    平台的支撑层即软硬件环境,通过购买阿里云的云服务、短信服务和域名服务等,减少搭建软硬件环境的成本,为平台的运行提供安全可靠、稳定快捷的环境,且方便平台后期升级扩容。

    地震标准化工作平台通过整合地震标准化人才资源、地震标准化信息资源等,进行科学、有效的集中管理,实现资源共享、交换。针对不用的使用者,在确保规范的同时,简化操作过程。通过记录地震标准化资源使用情况、专家和委员任务完成情况,为地震标准化基础研究、专家和委员的评估提供基础数据。

  • 图  1  2020年伽师地震区域构造及SAR数据观测范围

    Figure  1.  Regional tectonics and SAR data range map of 2020 Jiashi earthquake

    图  2  InSAR同震形变场结果

    Figure  2.  Result of coseismic deformation

    图  3  伽师地震滑动分布

    Figure  3.  Slip distribution of Jiashi earthquake

    图  4  滑动分布模型拟合结果

    Figure  4.  Simulation result of slip distribution model

    表  1  干涉影像对参数

    Table  1.   Parameters of interferometric image pairs

    轨道号飞行方向主影像时间副影像时间时间基线/d空间基线/m
    T129升轨2020-01-162020-01-281212.56
    T034降轨2020-01-102020-01-221257.37
    下载: 导出CSV

    表  2  发震断层震源参数对比

    Table  2.   Focal mechanism parameter comparison of seismic fault

    参数来源经度/°纬度/°深度/m走向/°倾角/°滑动角/°震级/MW
    全球矩心矩张量目录77.1939.801219638316.0
    美国地质调查局(MWw77.1139.8319.522120726.0
    美国地质调查局(MWb77.1139.83426291056.1
    德国地学中心77.1039.801022215766.1
    Yao等(202177.8639.31526920926.2
    Yu等(202077.3039.916.327591116.1
    He等(202177.2639.917.3275111036.0
    李成龙等(20214~627015856.0
    张迎峰等(20214~132752090~1206.0~6.1
    张文婷等(202177.2839.90527610.784.16.1
    本文77.3339.83527520896.1
    下载: 导出CSV
  • 艾力夏提·玉山, 刘代芹, 李杰等, 2018. 西南天山地区长时间尺度重力场变化特征. 震灾防御技术, 13(2): 388—398 doi: 10.11899/zzfy20180214

    Ailixiati Y. , Liu D. Q. , Li J. , et al. , 2018. Variation characteristics of long period gravity field in southwestern Tianshan. Technology for Earthquake Disaster Prevention, 13(2): 388—398. (in Chinese) doi: 10.11899/zzfy20180214
    邓启东, 冯先岳, 张培震等, 2000. 天山活动构造. 北京: 地震出版社.

    Deng Q. D., Feng X. Y., Zhang P. Z., et al., 2000. Active tectonics of Tianshan. Beijing: Seismological Press. (in Chinese)
    洪顺英, 申旭辉, 单新建等, 2009. 基于D-InSAR技术的西藏改则地震同震形变场特征分析. 地震, 29(4): 23—31 doi: 10.3969/j.issn.1000-3274.2009.04.003

    Hong S. Y. , Shen X. H. , Shan X. J. , et al. , 2009. Characteristics of coseismic deformation of the 2008 Gaize, Tibet earthquake based on D-InSAR technology. Earthquake, 29(4): 23—31. (in Chinese) doi: 10.3969/j.issn.1000-3274.2009.04.003
    季灵运, 刘传金, 徐晶等, 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析. 地球物理学报, 60(10): 4069—4082 doi: 10.6038/cjg20171032

    Ji L. Y. , Liu C. J. , Xu J. , et al. , 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China. Chinese Journal of Geophysics, 60(10): 4069—4082. (in Chinese) doi: 10.6038/cjg20171032
    李安, 杨晓平, 冉勇康等, 2016. 南天山低角度逆断层古地震破裂变形模式. 震灾防御技术, 11(2): 173—185 doi: 10.11899/zzfy20160201

    Li A. , Yang X. P. , Ran Y. K. , 2016. The paleoearthquake deformation model of the low-angle thrust fault in the south Tianshan. Technology for Earthquake Disaster Prevention, 11(2): 173—185. (in Chinese) doi: 10.11899/zzfy20160201
    李成龙, 张国宏, 单新建等, 2021.2020年1月19日新疆伽师县MS6.4级地震InSAR同震形变场与断层滑动分布反演. 地球物理学进展, 36(2): 481—488 doi: 10.6038/pg2021EE0176

    Li C. L. , Zhang G. H. , Shan X. J. , et al. , 2021. Coseismic deformation and slip distribution of the MS 6.4 Jiashi, Xinjiang earthquake revealed by Sentinel-1 A SAR imagery. Progress in Geophysics, 36(2): 481—488. (in Chinese) doi: 10.6038/pg2021EE0176
    乔学军, 王琪, 杨少敏等, 2014.2008年新疆乌恰MW6.7地震震源机制与形变特征的InSAR研究. 地球物理学报, 57(6): 1805—1813 doi: 10.6038/cjg20140612

    Qiao X. J. , Wang Q. , Yang S. M. , et al. , 2014. Study on the focal mechanism and deformation characteristics for the 2008 MW6.7 Wuqia earthquake, Xinjiang by InSAR. Chinese Journal of Geophysics, 57(6): 1805—1813. (in Chinese) doi: 10.6038/cjg20140612
    张文婷, 季灵运, 朱良玉等, 2021. 南天山前陆盆地的一次典型逆冲破裂事件——2020年新疆伽师6.4级地震. 地震地质, 43(2): 394—409 doi: 10.3969/j.issn.0253-4967.2021.02.009

    Zhang W. T. , Ji L. Y. , Zhu L. Y. , et al. , 2021. A typical thrust rupture event occurring in the foreland basin of the southern Tianshan: the 2020 Xinjiang Jiashi MS6.4 earthquake. Seismology and Geology, 43(2): 394—409. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.02.009
    张迎峰, 单新建, 张国宏等, 2021.2020年MW6.0柯坪塔格地震的变形特征及其对周边地震危险性的启示. 地震地质, 43(2): 377—393 doi: 10.3969/j.issn.0253-4967.2021.02.008

    Zhang Y. F. , Shan X. J. , Zhang G. H. , et al. , 2021. The deformation of 2020 MW6.0 Kalpintage earthquake and its implication for the regional risk estimates. Seismology and Geology, 43(2): 377—393. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.02.008
    周传义, 刘国林, 陈洋等, 2019. 基于升降轨Sentinel-1数据分析2017-11-12伊拉克MW7.3地震震源参数. 大地测量与地球动力学, 39(6): 577—582

    Zhou C. Y. , Liu G. L. , Chen Y. , et al. , 2019. Analysis of the source parameters of 2017 Iraq MW7.3 earthquake using Sentinel-1 A InSAR data. Journal of Geodesy and Geodynamics, 39(6): 577—582. (in Chinese)
    Allen M. B. , Vincent S. J. , Wheeler P. J. , 1999. Late Cenozoic tectonics of the Kepingtage thrust zone: interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics, 18(4): 639—654. doi: 10.1029/1999TC900019
    He P. , Wen Y. M. , Li S. P. , et al. , 2021. Present-day orogenic processes in the western Kalpin nappe explored by interseismic GNSS measurements and coseismic InSAR observations of the 2020 MW 6.1 Kalpin event. Geophysical Journal International, 226(2): 928—940. doi: 10.1093/gji/ggab097
    Huang G. C. D. , Roecker S. W. , Levin V. , et al. , 2017. Dynamics of intracontinental convergence between the western Tarim basin and central Tien Shan constrained by centroid moment tensors of regional earthquakes. Geophysical Journal International, 208(1): 561—576. doi: 10.1093/gji/ggw415
    Jónsson S. , Zebker H. , Segall P. , et al. , 2002. Fault slip distribution of the 1999 MW 7.1 Hector mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4): 1377—1389. doi: 10.1785/0120000922
    Khan N. G. , Bai L. , Zhao J. M. , et al. , 2017. Crustal structure beneath Tien Shan orogenic belt and its adjacent regions from multi-scale seismic data. Science China Earth Sciences, 60(10): 1769—1782. doi: 10.1007/s11430-017-9068-0
    Pfiffner O. A. , 2017. Thick-skinned and thin-skinned tectonics: a global perspective. Geosciences, 7(3): 71. doi: 10.3390/geosciences7030071
    Wang H. , Wright T. J. , Biggs J. , 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3): L03302.
    Yao Y. , Wen S. Y. , Li T. , 2021. The 2020 MW 6.0 Jiashi earthquake: a fold earthquake event in the southern Tian Shan, Northwest China. Seismological Research Letters, 92(2 A): 859—869. doi: 10.1785/0220200146
    Yu C. , Li Z. H. , Penna N. T. , et al. , 2018. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journal of Geophysical Research: Solid Earth, 123(10): 9202—9222. doi: 10.1029/2017JB015305
    Yu P. F., Qiao X. J., Xiong W., et al., 2020. Source model for the MW 6.0 earthquake in Jiashi, China on 19 January 2020 from Sentinel-1 A InSAR data. Earth, Planets and Space, 72: 169.
    Zhang Y. , Yang S. M. , Chen H. L. , et al. , 2019. The effect of overburden thickness on deformation mechanisms in the Keping fold-thrust belt, southwestern Chinese Tian Shan Mountains: insights from analogue modeling. Tectonophysics, 753: 79—92. doi: 10.1016/j.tecto.2019.01.005
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  66
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 刊出日期:  2022-09-30

目录

/

返回文章
返回