Difference Between Horizontal-to-Vertical Spectral Ratio and Surface-to-Bedrock Spectral ratio of Strong-Motion and Modified Horizontal-to-Vertical Spectral Ratio Method
-
摘要: 局部场地条件是决定场地地震动强度和频谱的重要因素,基于强震动和脉动记录的统计分析,获取表征场地条件影响的特征参数已成为确定工程场地设计地震动的较经济和实用方法,特别是对于大范围或难以开展现场勘测的工程场地。利用日本KiK-net台网强震动记录计算分析了台站场地地震动水平/竖向谱比(HVSR)与地表/基底谱比(SBSR)的差异,揭示SBSR/HVSR与HVSR呈对数线性分布的统计特征,并给出其定量关系,据此提出表征场地对地震动影响的修正水平/竖向谱比法。修正水平/竖向谱比法具有仅需地表观测记录的优势,并进一步考虑了场地竖向地震效应对水平/竖向谱比法精度的影响,更能合理地表征场地对地震动的影响。Abstract: During an earthquake, local site conditions are an important factor in determining the intensity and spectrum of ground motion. Statistical analysis to obtain characteristic parameters to characterize the influence of site conditions based on strong-motion and microtremor has become a more economical and practical method to determine the design ground motion of engineering sites, especially for a large survey area or an engineering site that are difficult to carry out site survey. The differences between the surface-to-bedrock spectral ratio (HVSR) and the horizontal-to-vertical spectral ratio (SBSR) of the strong-motion station sites were analyzed by using the strong-motion records from the Japanese KiK-net network, the statistical characteristics of log linear relation between SBSR/HVSR and HVSR was revealed, and a quantitative relationship between them was obtained, and then a modified horizontal-to-vertical spectral ratio method was proposed to characterize the influence of site conditions on ground-motion. This modified method has the advantage that the HVSR method only needs surface records, and further considers the influence of the vertical seismic effect on the accuracy of the HVSR method. The modified HVSR method can more reasonably characterize the influence of site conditions on ground-motion.
-
引言
重力坝作为重要的基础设施,一旦发生破坏,可能会导致潜在的生命危险和巨大的经济损失,对强震作用下的混凝土重力坝进行抗震安全研究极其重要。
现有研究表明,影响重力坝抗震性能的主要因素有(Chopra,2012;Løkke等,2018):(1)坝体-库水动力相互作用,包含库水可压缩性和库底沉积物引起的库底吸收系数(Hall等,1982;Fenves等,1985);(2)坝体-基岩相互作用,包括岩体的惯性作用(Fenves等,1985;Tan等,1996);(3)无限地基辐射阻尼效应(Tan等,1996;Zhang等,2009);(4)地震动的空间分布和不确定性(Chopra,2010);(5)坝体和基岩的材料非线性(El-Aidi等,1989;Fenves等,1992;Bhattacharjee等,1993;Cervera等,1995;Pan等,2011)。众多研究者通过考虑以上部分或全部因素开展了混凝土重力坝抗震性能评估等相关研究。Alembagheri(2016)采用静力弹塑性分析方法,从线性地震分析结果出发,提出一种系统且合理的损伤程度评估方法;将大坝混凝土的拉伸开裂作为主要破坏模式,以3座现有混凝土重力坝为例,对该方法进行说明,并讨论了可能的非线性响应和破坏机理。Hariri-Ardebili等(2013)首次以专业的方式提出基于应变的混凝土坝结构性能判别准则,并探讨了其在拱坝地震破坏评估中的适用性,利用需求能力比DCR、累积非弹性持续时间和超应力/超应变区等指标对大坝的抗震性能进行研究,结果表明,采用基于应力的准则对拱向作用的评估偏向保守,而采用基于应变准则的抗震安全性评估对梁向的作用评估偏向保守。郑晓东等(2016)基于混凝土塑性损伤模型考虑大坝混凝土材料非线性,针对强震持时对混凝土重力坝损伤破坏累积进行了研究,结果表明,混凝土大坝损伤累积随着地震动持时的增加逐渐增大,局部损伤指标可用于确定大坝抗震薄弱部位,整体损伤指标能够用于大坝地震整体损伤破坏评价。潘坚文等(2010)针对强震输入方式对重力坝的地震响应进行了讨论,分别采用无质量地基模型和弹簧-阻尼边界模型对不同地震荷载、不同基岩和混凝土弹性模量比值下重力坝的地震响应进行对比分析,并提出等效结构阻尼理念和近似方法。殷琳等(2019)开展了水平分层土层系统的等效阻尼比近似计算方法研究,并建议采用基于三角分布的加权函数计算等效阻尼比。杜修力等(2017)针对软、中、硬3种土层场地,选取100条实测地震动记录调幅至0.1 g、0.2 g和0.3 g,并基于一维等效线性方法开展场地随机地震反应研究。
综上可知,上述研究通过考虑影响大坝抗震性能的主要因素,从不同角度对重力坝抗震性能进行研究,获得了丰硕的研究成果,但上述研究均是在重力坝坝基为地质条件较好的基岩前提下开展的。实际工程中,重力坝可能处于软弱覆盖层基础、砂砾石基础等工程地质条件较差的场址,覆盖土层地基情况下的地震动输入及重力坝地震响应与基岩场地存在较大的差异。鉴于此,本文结合国外某强震区深厚覆盖层场地重力坝工程,采用成层状地基地震动输入计算方法、粘弹性边界模型和接触非线性模型,开展超强地震作用下覆盖层场地重力坝的非线性动力分析,结合DCR评价指标,对重力坝抗震安全性进行评估,为重力坝工程设计提供支持。
1. 计算理论
1.1 粘弹性边界与地震动输入
1.1.1 粘弹性边界
众多研究者根据不同假设条件从不同角度开展了考虑坝体和地基相互作用的研究。目前应用较广泛的是粘弹性人工边界(Deeks等,1994;刘晶波,1998),包括在两侧和底部边界每个节点增加弹簧和阻尼器。在有限元计算中,通过在两侧和底部考虑边界弹簧刚度和阻尼系数实现粘弹性人工边界的施加,垂直于边界方向的弹簧系数KN和阻尼系数CN分别为
$ \dfrac{E}{{2{r_{\rm{b}}}}}A $ 、$ \rho {c_{\rm{p}} }A $ ,平行于边界方向的弹簧系数KT和阻尼系数CT分别为$ \dfrac{G}{{2{r_{\rm{b}}}}}A $ 、$ \rho {c_{\rm{s}}}A $ ,其中,E为弹性模量,G为剪切模量,$ \rho $ 为密度,A为人工边界节点影响面积,$ {r_{\rm{b}}} $ 表示从边界底部到顶部的距离,$ {c_{\rm{p}} } $ 和$ {c_{\rm{s}}} $ 分别为有限元模型外侧介质的压缩波波速和剪切波波速。1.1.2 地震动输入
对于成层状地基,其地震动输入采用自由场模型输入,详细求解方法见文献(Idriss等,1992)。本文采用的一维波动系统如图1所示,该系统由N个在水平方向上可延伸至无穷远的水平层组成,每一层均匀且各向同性,材料特性包括厚度h、密度ρ、剪切模量G和阻尼系数β。图1所示剪切波竖向传播会产生水平向位移:
$$ u = u\left( {x,t} \right) $$ (1) 频率为
$ \omega $ 的剪切波水平向位移为:$$ u\left( {x,t} \right){\text{ = }}U\left( x \right){{\rm{e}}^{i\omega t}} $$ (2) 位移
$ u\left( {x,t} \right) $ 须满足波动方程:$$ \rho \frac{{{\partial ^2}u}}{{\partial {t^2}}} = G\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \eta \frac{{{\partial ^2}u}}{{\partial x\partial t}} $$ (3) 由式(2)、(3)可得:
$$ \left( {G + i\omega \eta } \right)\frac{{{{\rm{d}}^2}U}}{{{\rm{d}}{x^2}}}{\text{ = }}\rho {\omega ^2}U $$ (4) 其一般解为:
$$ U\left( x \right) = E{{\rm{e}}^{ikx}} + F{{\rm{e}}^{ - ikx}} $$ (5) 其中,
$ {k^2} = \dfrac{{\rho {\omega ^2}}}{{G + i\omega \eta }} = \dfrac{{\rho {\omega ^2}}}{{{G^ * }}} $ ,为复波数;$ {G^ * } $ 为复剪切模量。1.2 接触非线性
对于接触非线性问题, ABAQUS有限元分析软件中通过2种模型对接触压力进行定义。首先是基于拉格朗日乘子法的硬接触模型(ABAQUS,2010),该方法对接触压力
$ p $ 的定义如下:(1) 当
$ h < 0 $ 时,$ p = 0 $ ,表示张开;(2)当
$ h{\text{ = }}0 $ 时,$ p > 0 $ ,表示闭合。其次是基于指数关系的软接触模型,模型中接触面由主面和从面组成,接触面的接触压力-过盈曲线遵循指数关系,如图2所示,表达式如下所示:
$$ \left\{ {\begin{array}{*{20}{l}} {p = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\qquad h \leqslant - c} \\ {p = \dfrac{{{p_0}}}{{e - 1}}\left[ {\left( {\dfrac{h}{c} + 1} \right)\left( {\exp \left( {\dfrac{h}{c} + 1} \right) - 1} \right)} \right]\;\;\;\;\;h > - c} \end{array}} \right. $$ (6) 式中,
$ h $ 表示张开度;$ {p_0} $ 为零过盈时的典型压力值;$ c $ 是初始接触距离。2. 算例与分析
2.1 工程背景
尼泊尔某水电站位于加德满都东北方向约75 km处,距中国边境陆路樟木口岸约5 km,于1997年开工建设,2001年1月建成发电。该水电站为低坝长引水式电站,挡水坝为溢流式混凝土重力坝,电站装机2台,单机容量22.5 MW。
该水电站经历了2次较严重的自然灾害事件:(1)在2015年5月尼泊尔里氏7.8级地震及余震中,重力坝完好无损,水库淤积在右岸1#、2#重力坝段上游区域,基本接近坝顶高程。(2)2016年7月5日因冰川湖溃决引发泥石流,冲击坝址首部区,造成重力坝严重破坏。泥石流严重损毁了1#坝段的坝肩和地基,浆砌石护岸和通往大坝的道路被破坏,中尼高速公路被切断,靠近岸坡的1#坝段地基被掏空。在泥石流的冲刷作用下,右坝肩处形成一条绕过重力坝的新河道。2#坝段下游沿坝顶有裂纹及剥落现象。除1#坝段右侧因河道侵蚀而露出外,坝体上游大部分被冲积层淤积掩盖,需修复或重建以恢复重力坝挡水发电功能。鉴于工程处于高地震烈度区,需对修复结构进行抗震性能评估。
2.2 有限元模型
修复后的重力坝几何模型如图3所示,坝顶高程为1440.5 m,建基面最低高程为1413.0 m,最大坝高为27.5 m,覆盖土层以下为基岩,厚度为50 m。依据几何模型构建重力坝坝体-地基有限元计算模型,如图4所示。基于所构建的有限元模型分别开展考虑覆盖土层地震动输入的线弹性和非线性动力有限元计算分析,对其抗震安全性进行全面论证评估。基岩刚度远大于覆盖层刚度,覆盖层底部的地震动几乎不受上部土层影响,可以考虑为基岩露头处的地震动输入,同时通过以上成层状地基地震动输入计算方法获取两侧边界自由运动,采用粘弹性边界考虑地基辐射阻尼效应。本文所考虑地震动输入模型如图5所示。
2.3 静动力荷载与材料参数
(1)静、动力荷载
静态荷载包括坝体自重、上游水和淤沙荷载、下游水荷载以及扬压力。正常运行上游水位为1434 m,淤沙高程为1425 m,下游水位为1425 m。扬压力从上游坝踵到下游坝趾沿坝基交界面线性分布。地震加速度时程如图6所示,其中运行基准地震OBE和最大设计地震MDE水平向地震动峰值加速度分别为0.65 g、1.2 g,相应的竖向峰值加速度分别为0.54 g、0.99 g。
(2)坝体和地基材料参数
动力计算时,混凝土及覆盖层的阻尼比分别取5%、7%,混凝土、地基材料及各类接触面参数如表1、2所示。
表 1 混凝土及地基材料参数Table 1. Material parameters of concrete and foundation材料 容重γ/kN·m−3 剪切
模量G/MPa泊松比$ \mu $ 弹性模量E/MPa 摩擦角φ/° 容许承载力/kPa 抗压/抗拉强度/MPa 砼C20 24.0 12000 0.167 28000 - 12500 20/2.40 毛石砼
C1224.0 9500 0.167 22000 - 7500 12/1.71 覆盖层 19.0 - 0.200 25 32.5 400 - 岩石 26.5 1800 0.275 4500 - - - 表 2 各类接触面参数Table 2. Parameters of contact surfaces接触面 粘聚力c/kPa 摩擦角φ/° 砼-砼 0 45.0 砼-毛石砼 0 40.0 砼-覆盖层 0 28.8 毛石砼-覆盖层 0 28.8 2.4 结果分析
本工程按照《Gravity dam design》(EM 1110-2-2200)(US Army Corps of Engineers, 1995)、《Time-history dynamic analysis of concrete hydraulic structures》(EM 1110-2-6051)(US Army Corps of Engineers, 2003)、《Stability analysis of concrete structures》(EM 1110-2-2100)(US Army Corps of Engineers, 2005)、《Earthquake design and evaluation of concrete hydraulic structures》(EM 1110-2-6053)(US Army Corps of Engineers, 2007)进行设计,将混凝土应力性能评估利用需求能力比DCR作为关键绩效指标。Alembagheri(2016)、Hariri-Ardebili等(2013)基于DCR方法对混凝土坝的抗震性能进行了评估。通过开展OBE作用坝体-地基线弹性动力时程分析得到坝体应力、坝顶位移及坝基交界面滑动安全系数,如图7~图10所示。由图可知,坝体最大主应力为1.18 MPa,小于允许值2.4 MPa(DCR=1);最小主应力为3.38 MPa,亦小于允许值11.5 MPa;坝顶最大位移为1.32 m;滑动安全系数为0.19。
根据线弹性动力时程分析可得,在OBE作用下,重力坝坝体应力均在允许范围内,但其抗震稳定安全系数仅0.19,难以满足抗震稳定性。为全面评估重力坝的抗震性能,需进一步开展考虑坝体和地基接触非线性的动力时程分析。根据非线性动力时程分析可得OBE和MDE工况下坝体最终滑移值分别为1.92 m、16.06 m,如图11、图12所示。线性和非线性动力分析结果表明,在OBE和MDE作用下,重力坝均不能保持稳定。
为增强重力坝抗震稳定性,在重力坝坝后回填土,同时将地基范围延伸扩展至基岩,回填土材料参数与覆盖土层一致(表1),坝体-地基几何模型及预设接触面如图13所示,相应的坝体-地基非线性有限元计算模型如图14所示。图15、图16分别给出了OBE和MDE作用下坝基接触面滑移时程,由图可知,在OBE作用下,坝基交界面最大滑移量为0.138 m(沿上游方向),残余滑移量为0.059 m(沿上游方向);在MDE作用下,坝基交界面最大滑移量为0.41 m(沿下游方向),残余滑移量为0.025 m(沿下游方向)。综上所述,重力坝坝体下游坝后回填土能够有效增强其抗震稳定性。
3. 结论
本文依据成层状地基地震动输入计算方法得到覆盖层边界的自由场运动,采用粘弹性边界考虑地基辐射阻尼效应,通过线弹性和非线性动力有限元分析,详细论证、评估了超强地震作用下国外某覆盖土层重力坝的抗震安全性,本研究可为强震区覆盖土层重力坝抗震分析提供参考,主要结论如下:
(1)线弹性OBE工况下,坝体最大主应力为1.18 MPa,最小主应力为3.38 MPa,均小于允许值;坝顶最大位移为1.32 m,滑动安全系数为0.19,难以满足抗震稳定性;
(2)通过非线性动力时程分析得到OBE和MDE工况下,坝体最终滑移值分别为1.92 m、16.06 m,重力坝-地基体系无法保持稳定;
(3)为加强重力坝抗震稳定性,在坝体下游坝后回填土,通过建立新的分析模型得到,在OBE作用下,坝基交界面最大滑移量为0.138 m(沿上游方向),残余滑移量为0.059 m(沿上游方向);在MDE作用下,坝基交界面最大滑移量为0.41 m(沿下游方向),残余滑移量为0.025 m(沿下游方向),重力坝的抗震稳定性得到了有效加强。
-
表 1 选取台站及相关信息
Table 1. Selected stations and related information in this study
编号 台站代码 纬度N/° 经度E /° 钻井度/m VS,30/m·s−1 美国分类场地类别 日本分类场地类别 1 AKTH02 39.6634 140.5721 100 620.404 C SCⅠ 2 AKTH13 39.9819 140.4072 100 535.723 C SCⅠ 3 AOMH05 40.8564 141.1033 312 238.302 D SCⅢ 4 AOMH13 40.5794 141.4451 150 154.274 E SCⅣ 5 AOMH16 40.4624 141.0923 150 225.750 D SCⅣ 6 AOMH17 40.4624 141.3374 114 378.362 C SCⅡ 7 FKSH11 37.2006 140.3386 115 239.826 D SCⅢ 8 FKSH14 37.0264 140.9702 147 236.561 D SCⅣ 9 FKSH20 37.4911 140.9871 109 350.000 D SCⅣ 10 HDKH01 42.7031 142.2296 100 368.252 C SCⅡ 11 HDKH04 42.5126 142.0381 220 235.026 D SCⅣ 12 IBRH10 36.1112 139.9889 900 144.138 E SCⅣ 13 IBRH13 36.7955 140.5750 100 335.369 D SCⅡ 14 IBRH17 36.0864 140.3140 510 300.774 D SCⅣ 15 IBUH01 42.8739 141.8191 101 306.785 D SCⅣ 16 IWTH02 39.8250 141.3826 102 389.567 C SCⅡ 17 IWTH06 40.2611 141.1709 100 431.655 C SCⅡ 18 IWTH08 40.2686 141.7831 100 304.521 D SCⅢ 19 IWTH24 39.1979 141.0118 150 486.412 C SCⅣ 20 IWTH27 39.0307 141.532 100 670.313 C SCⅠ 21 KMMH01 33.1090 130.695 100 574.631 C SCⅠ 22 KSRH06 43.2200 144.4285 237 326.193 D SCⅣ 23 KSRH07 43.1359 144.3274 222 204.104 D SCⅣ 24 KSRH10 43.2084 145.1168 255 212.875 D SCⅣ 25 MYGH13 38.6990 141.4180 100 570.591 C SCⅠ 26 NIGH11 37.1728 138.7440 205 375.000 C SCⅣ 27 NMRH04 43.3978 145.1224 216 168.103 E SCⅣ 28 SMNH12 35.1634 132.8558 101 590.200 C SCⅠ 29 TCGH12 36.6959 139.9842 120 343.678 D SCⅣ 30 TKCH08 42.4865 143.1520 100 353.208 D SCⅣ 表 2 不同峰值加速度分组的地震动记录数量
Table 2. The number of strong-motion records in different PGA groups
场地类型 台站代码 PGA/gal 10~20 20~100 100~200 200~300 >300 C AKTH02 74 54 2 0 0 AKTH13 122 79 9 0 0 AOMH17 299 106 9 4 0 HDKH01 127 60 3 0 4 IWTH02 876 667 42 11 14 IWTH06 181 85 6 0 0 IWTH24 185 112 10 3 2 IWTH27 1079 504 31 8 8 KMMH01 99 39 6 2 0 MYGH13 675 311 13 1 2 NIGH11 146 110 9 3 3 SMNH12 52 52 6 4 0 D AOMH05 417 207 15 3 0 AOMH16 428 171 9 2 0 FKSH11 622 285 12 2 3 FKSH14 635 283 18 2 2 FKSH20 393 238 21 0 2 HDKH04 119 56 4 1 2 IBRH13 1175 732 79 23 33 IBRH17 796 424 21 2 3 IBUH01 317 136 10 3 4 IWTH08 423 182 13 0 2 KSRH06 349 155 3 1 8 KSRH07 286 149 8 1 4 KSRH10 273 174 11 3 5 TCGH12 680 338 6 0 2 TKCH08 197 117 10 0 1 E AOMH13 213 86 7 0 0 IBRH10 522 248 16 2 0 NMRH04 328 150 8 0 2 表 3 a和b模型系数取值
Table 3. Coefficient values of relation of parameters a and b with period T
参数 PGA/gal 周期T/s 回归系数 p1 p2 p3 q1 q2 q3 R a <100 [0.04,0.27] −0.376 −0.762 −0.391 1 2.014 1.019 0.902 [0.27,0.86] −0.404 −0.318 −0.067 1 0.768 0.154 0.957 [0.86,20.00] 0.538 −1.404 −0.354 0 1.000 0.656 0.952 ≥100 [0.04,0.20] −0.348 −0.707 −0.365 1 2.066 1.077 0.958 [0.20,0.84] 0.813 0.361 −0.277 0 1.000 1.090 0.874 [0.84,20.00] 0.879 −1.510 −0.634 0 1.000 1.799 0.789 b <100 [0.04,0.10] −0.250 −0.118 −0.072 0 1.000 0.763 0.962 [0.10,20.00] 1.124 1.103 1.114 1 2.745 3.032 0.966 ≥100 [0.04,0.10] 0.309 1.307 0.964 0 1.000 0.951 0.985 [0.10,20.00] 0.670 −0.117 0.282 1 1.120 1.607 0.992 -
[1] 郭明珠, 赵芳, 赵凤仙, 2013. 场地地震动局部地形效应研究进展. 震灾防御技术, 8(3): 311-318. doi: 10.3969/j.issn.1673-5722.2013.03.010Guo M. Z., Zhao F., Zhao F. X., 2013. A review of the effect of small-scale surface topography on ground motions. Technology for Earthquake Disaster Prevention, 8(3): 311-388. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.03.010 [2] 黄雅虹, 吕悦军, 彭艳菊, 2009. 国内外不同抗震设计规范中场地分类方法的内在关系研究. 震灾防御技术, 4(1): 80-90. doi: 10.3969/j.issn.1673-5722.2009.01.008Huang Y. H., Lu Y. J., Peng Y. J., 2009. Study on the relations of site classification methods in seismic design standards between china and abroad. Technology for Earthquake Disaster Prevention, 4(1): 80-90. (in Chinese) doi: 10.3969/j.issn.1673-5722.2009.01.008 [3] 李小军, 1992. 场地土层对地震地面运动影响的分析方法. 世界地震工程, 8(2): 49-60. [4] 李小军, 彭青, 2001. 不同类别场地地震动参数的计算分析. 地震工程与工程振动, 21(1): 29-36. doi: 10.3969/j.issn.1000-1301.2001.01.005Li X. J., Pen Q., 2001. Calculation and analysis of earthquake ground motion parameters for different site categories. Earthquake Engineering and Engineering Vibration, 21(1): 29-36. (in Chinese) doi: 10.3969/j.issn.1000-1301.2001.01.005 [5] 李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21-29.LI X. J., 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21-29. (in Chinese) [6] 吕悦军, 彭艳菊, 兰景岩等, 2008. 场地条件对地震动参数影响的关键问题. 震灾防御技术, 3(2): l26-l35. doi: 10.3969/j.issn.1673-5722.2008.02.003Lu Y. J., Peng Y. J., Lan J. Y., et al., 2008. Some key problems about site effects on seismic ground motion parameters. Technology for Earthquake Disaster Prevention, 3(2): 126-135. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.003 [7] 荣棉水, 李小军, 王振明等, 2016. HVSR方法用于地震作用下场地效应分析的适用性研究. 地球物理学报, 59(8): 2878-2891. doi: 10.6038/cjg20160814Rong M. S., Li X. J., Wang Z. M., et al., 2016. Applicability of HVSR in analysis of site-effects caused by earthquakes. Chinese Journal of Geophysics, 59(8): 2878-2891. (in Chinese) doi: 10.6038/cjg20160814 [8] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(2016年版). 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings (2016 Edition). Beijing: China Architecture and Building Press. (in Chinese) [9] Baise L. G., 2000. Investigations in site response from ground motion observations in vertical arrays. Berkeley: University of California. [10] Borcherdt R. D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1): 29-61. [11] Borcherdt R. D., Gibbs J. F., 1976. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66(2): 467-500. [12] Building Seismic Safety Council, 2004. 2003 Edition NEHPR recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Part 1(Provisions). Washington D C: Building Seismic Safety Council, National Institute of Building Sciences, 19-45. [13] Chen Q. F., Liu L. B., Wang W. J., et al., 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54(2): 280-287. [14] Fukushima Y., Bonilla L. F., Scotti O., et al., 2007. Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations. Journal of Earthquake Engineering, 11(5): 712-724. doi: 10.1080/13632460701457116 [15] Hwang H. H. M., Lin H. J., Huo J. R., 1997. Site coefficients for design of buildings in eastern United States. Soil Dynamics and Earthquake Engineering, 16(1): 29-40. doi: 10.1016/S0267-7261(96)00031-0 [16] Kawase H., Sánchez-Sesma F. J., Matsushima S., 2011. The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101(5): 2001-2004. doi: 10.1785/0120100263 [17] Konno K., Ohmachi T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1): 228-241. [18] Lee C. T., Cheng C. T., Liao C. W., et al., 2001. Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5): 1283-1297. [19] Lermo J., Chávez-García F. J., 1993. Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5): 1574-1594. [20] Li X. J., Jing B. B., Liu C., et al., 2019. Site classification method based on geomorphological and geological characteristics and its application in China. Bulletin of the Seismological Society of America, 109(5): 1843-1854. doi: 10.1785/0120190058 [21] Liu H. X., 2002. The great Tangshan earthquake of 1976. California: Earthquake Engineering Research Laboratory, California Institute of Technology, 171-338. [22] Nagashima F., Matsushima S., Kawase H., et al., 2014. Application of horizontal‐to‐vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K‐NET site in Tohoku, Japan. Bulletin of the Seismological Society of America, 104(5): 2288-2302. doi: 10.1785/0120130219 [23] Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of the Railway Technical Research Institute, 30(1): 25-33. [24] Pitilakis K., Riga E., Anastasiadis A., 2013. New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4): 925-966. doi: 10.1007/s10518-013-9429-4 [25] Régnier J., Cadet H., Bonilla L. F., et al., 2013. Assessing nonlinear behavior of soils in seismic site response: statistical analysis on KiK-net strong-motion data. Bulletin of the Seismological Society of America, 103(3): 1750-1770. doi: 10.1785/0120120240 [26] Seed H. B., Ugas C., Lysmer J., 1976a. Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1): 221-243. [27] Seed H. B., Murarka R., Lysmer J., et al., 1976b. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bulletin of the Seismological Society of America, 66(4): 1323-1342. [28] Seed H. B., Romo M. P., Sun J. I., et al., 1988. The Mexico earthquake of September 19, 1985-relationships between soil conditions and earthquake ground motions. Earthquake Spectra, 4(4): 687-729. doi: 10.1193/1.1585498 [29] Wen K. L., Beresnev I. A., Yeh Y. T., 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophysical Research Letters, 21(24): 2625-2628. doi: 10.1029/94GL02407 [30] Wen K. L., Beresnev I. A., Yeh Y. T., 1995. Investigation of non-linear site amplification at two downhole strong ground motion arrays in Taiwan. Earthquake Engineering & Structural Dynamics, 24(3): 313-324. [31] Wen R. Z., Ren Y. F., Zhou Z. H., et al., 2010. Preliminary site classification of free-field strong motion stations based on Wenchuan earthquake records. Earthquake Science, 23(1): 101-110. doi: 10.1007/s11589-009-0048-8 [32] Wood H. O., 1908. Distribution of apparent intensity in San Francisco. In: The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission. Washington DC: Carnegie Institution of Washington. [33] Yamazaki F., Ansary M. A., 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization. Earthquake Engineering & Structural Dynamics, 26(7): 671-689. [34] Zhang X. L., Peng X. B., Li X. J., et al., 2020. Seismic effects of a small sedimentary basin in the eastern Tibetan plateau based on numerical simulation and ground motion records from aftershocks of the 2008 Mw7.9 Wenchuan, China earthquake. Journal of Asian Earth Sciences, 192: 104257. doi: 10.1016/j.jseaes.2020.104257 [35] Zhao J. X., Irikura K., Zhang J., et al., 2006. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96(3): 914-925. doi: 10.1785/0120050124 期刊类型引用(5)
1. 于淳蛟. 基于坝体安全评价模型的复合地基坝体质量安全分析. 水利科技与经济. 2024(02): 161-166 . 百度学术
2. 徐乐意,黄海斌,郁怀光. 主余震对重力坝损伤特性影响. 华北地震科学. 2024(02): 9-13 . 百度学术
3. 汪海洋,郭涛,刘海龙,吴文禄,马鸿泽,虎雪洁. 强震作用下重力坝非线性动力响应分析. 中国水运(下半月). 2024(07): 111-113 . 百度学术
4. 汪海洋,郭涛,刘海龙,吴文禄,马鸿泽,虎雪洁. 强震作用下重力坝非线性动力响应分析. 中国水运. 2024(14): 111-113 . 百度学术
5. 王伟,范建朋. 尼泊尔上博迪克西水电站重力坝修复. 西北水电. 2022(04): 58-62 . 百度学术
其他类型引用(0)
-