Difference Between Horizontal-to-Vertical Spectral Ratio and Surface-to-Bedrock Spectral ratio of Strong-Motion and Modified Horizontal-to-Vertical Spectral Ratio Method
-
摘要: 局部场地条件是决定场地地震动强度和频谱的重要因素,基于强震动和脉动记录的统计分析,获取表征场地条件影响的特征参数已成为确定工程场地设计地震动的较经济和实用方法,特别是对于大范围或难以开展现场勘测的工程场地。利用日本KiK-net台网强震动记录计算分析了台站场地地震动水平/竖向谱比(HVSR)与地表/基底谱比(SBSR)的差异,揭示SBSR/HVSR与HVSR呈对数线性分布的统计特征,并给出其定量关系,据此提出表征场地对地震动影响的修正水平/竖向谱比法。修正水平/竖向谱比法具有仅需地表观测记录的优势,并进一步考虑了场地竖向地震效应对水平/竖向谱比法精度的影响,更能合理地表征场地对地震动的影响。Abstract: During an earthquake, local site conditions are an important factor in determining the intensity and spectrum of ground motion. Statistical analysis to obtain characteristic parameters to characterize the influence of site conditions based on strong-motion and microtremor has become a more economical and practical method to determine the design ground motion of engineering sites, especially for a large survey area or an engineering site that are difficult to carry out site survey. The differences between the surface-to-bedrock spectral ratio (HVSR) and the horizontal-to-vertical spectral ratio (SBSR) of the strong-motion station sites were analyzed by using the strong-motion records from the Japanese KiK-net network, the statistical characteristics of log linear relation between SBSR/HVSR and HVSR was revealed, and a quantitative relationship between them was obtained, and then a modified horizontal-to-vertical spectral ratio method was proposed to characterize the influence of site conditions on ground-motion. This modified method has the advantage that the HVSR method only needs surface records, and further considers the influence of the vertical seismic effect on the accuracy of the HVSR method. The modified HVSR method can more reasonably characterize the influence of site conditions on ground-motion.
-
引言
地震灾害调查和研究表明,地球表面及浅地表岩土介质变化是导致大地震中局部范围内地震灾害差异的主要因素(Wood,1908;Liu,2002),局部场地条件对地震波传播具有重要影响的结论被大地震不断证实,并得到广泛研究与关注(Borcherdt等,1976;Seed等,1976a,1976b,1988;李小军,1992;郭明珠等,2013;Zhang等,2020)。在实际工程中,局部场地条件一般指空间几十米到几百米范围内的浅层工程地质构造和地表地形等的变化情况。在场地条件对地震动影响研究方面,为表征场地条件的差异,通常采用一定分类指标将场地划分为不同类别(Lee等,2001;Building Seismic Safety Council,2004;黄雅虹等,2009;中华人民共和国住房和城乡建设部等,2010;李小军,2013;Li等,2019),并基于场地分类采用强震动记录统计或场地模型数值模拟分析方法获取表征场地条件对地震动影响的特征参数及经验关系,采用地震动参数调整模式考虑不同类别场地对地震动的影响,为实际工程提供参考(Hwang等,1997;李小军等,2001;吕悦军等,2008;Pitilakis等,2013)。由于场地条件的复杂性,简单的场地分类调整往往难以表征实际特定场地条件对地震动的影响。因此,在较重要的工程建设中,需开展具体场地条件钻探勘测,并开展场地地震反应模拟,以考虑特定场地条件对地震动的影响。而针对涉及范围较大(如新区规划、旧城改造等场地)或开展场地条件钻探勘测困难(如高山、峡谷区和岛礁等建设工程场地)的场地,基于强震动和脉动记录分析、统计以获取场地条件影响的特征已成为确定工程场地设计地震动较经济和实用的方法。
早在1970年,Borcherdt(1970)提出了利用强震动观测场地台站与参考基岩台站记录计算沉积场地效应的传递函数谱比法,这类方法是最直接的场地影响分析方法,也是经典的标准谱比方法。地表/基底谱比法(SBSR法,也称为井上/井下谱比法)是基于场地竖井强震动观测台阵记录的方法(Wen等,1995;Régnier等,2013),选取场地覆盖土层下的基岩层(井下)地震动观测结果作为参考基岩地震动。与标准谱比法相比,SBSR法能够有效解决参考观测场地选取困难的问题,同时认为竖井台阵中的井上(场地地表)与井下地震动记录里包含了相同的震源效应和波传播路径效应,利用地表与基底地震动谱比值可更好地表征场地条件对地震动特性的影响。20世纪80年代末,日本学者中村(Nakamura,1989)提出了基于地脉动水平分量与竖向分量傅立叶幅值谱比值(水平/竖向谱比,HVSR)估计场地对地震动影响特征的方法,被称水平/竖向谱比法(HVSR法),也常被称为Nakamura方法。该方法默认以下假定:①某场地在不同次地脉动测试中,频谱特性基本一致,放大效应主要与场地动力特性有关;②基岩处HVSR为1;③在水平分量被较大放大的同时,竖向分量基本不被放大,认为竖向传递函数为1。HVSR法源于脉动观测分析,最早应用于地脉动等微震领域(Konno等,1998;Chen等,2009),后发展至强震动观测研究,将该方法推广应用于地震动场地效应研究中,以估算场地条件对地震动影响的传递函数(Lermo等,1993;Yamazaki等,1997;Zhao等,2006;Fukushima等,2007;Wen等,2010;Kawase,2011;Nagashima等,2014;荣棉水等,2016)。HVSR法用于地震动场地影响分析的合理性和适用范围等问题一直受到关注和争论,主要因为HVSR法假定基岩处HVSR为1和竖向分量基本不被放大。目前对于相关问题的研究仍未有一致结论,但较认可的认识是利用HVSR法能有效提取地震动场地影响卓越周期信息,但对场地地震动频谱幅值的估计存在较大误差(荣棉水等,2016)。
为进一步研究基于强震动观测记录的场地条件对地震动影响的评估方法,本文利用日本KiK-net台网强震动记录进行计算分析,探讨台站场地SBSR与HVSR差异特征及随频率变化规律,提出可更好表征场地条件对地震动影响特征的修正水平/竖向谱比法(Modified Horizontal-to-vertical Spectral Ratio,MHVSR)。
1. 强震动记录选取与处理
日本国家地球科学与防灾研究所(NIED)在全国范围内建立了2个强震动观测网,分别为K-NET和KiK-net,共有1700多个观测台站,台站间平均距离小于20 km。KiK-net强震动观测台网观测台站均属于竖井多点观测台站(即竖井台阵),每个台站分别在地表和钻井底部基岩中设置三向强震动观测仪,可同时观测场地地表和覆盖土层下基岩地震动。KiK-net台站钻井深度均不小于100 m,除个别台站场地外,钻孔底部均到达工程基岩面(VS > 760 m/s)。KiK-net台网于1997年投入使用,已获取大量观测记录。
1.1 观测台站选取
本研究着重探讨HVSR法在成层覆盖土层场地对地震动影响分析中的应用问题,因此,选出用于研究的KiK-net台网观测记录后,还需考虑观测台站场地是否可视为成层覆盖土层场地问题,即是否可简单地处理为一维场地模型。首先从KiK-net台网已获取一定数量强震动记录的662个台站中选取开展本研究的台站,选取条件为:①地表地震动峰值加速度PGA>100 gal的数量不少于2条;②PGA>10 gal的数量不少于100条。然后对地震动记录符合以上要求的台站按一维场地模型计算其水平剪切运动传递函数(记为计算传递函数),同时利用地震动记录计算水平向地震动传递函数(地表/基底谱比,记为记录传递函数),一维场地模型采用台站场地钻孔与测试资料建立。统计分析记录传递函数对数标准差均值σ、计算传递函数与记录传递函数的相关系数r,选取场地条件同时满足σ<0.35和r>0.6的台站作为符合本研究要求的场地条件和地震动记录数量的台站,最终选取30个台站,如表1所示。
表 1 选取台站及相关信息Table 1. Selected stations and related information in this study编号 台站代码 纬度N/° 经度E /° 钻井度/m VS,30/m·s−1 美国分类场地类别 日本分类场地类别 1 AKTH02 39.6634 140.5721 100 620.404 C SCⅠ 2 AKTH13 39.9819 140.4072 100 535.723 C SCⅠ 3 AOMH05 40.8564 141.1033 312 238.302 D SCⅢ 4 AOMH13 40.5794 141.4451 150 154.274 E SCⅣ 5 AOMH16 40.4624 141.0923 150 225.750 D SCⅣ 6 AOMH17 40.4624 141.3374 114 378.362 C SCⅡ 7 FKSH11 37.2006 140.3386 115 239.826 D SCⅢ 8 FKSH14 37.0264 140.9702 147 236.561 D SCⅣ 9 FKSH20 37.4911 140.9871 109 350.000 D SCⅣ 10 HDKH01 42.7031 142.2296 100 368.252 C SCⅡ 11 HDKH04 42.5126 142.0381 220 235.026 D SCⅣ 12 IBRH10 36.1112 139.9889 900 144.138 E SCⅣ 13 IBRH13 36.7955 140.5750 100 335.369 D SCⅡ 14 IBRH17 36.0864 140.3140 510 300.774 D SCⅣ 15 IBUH01 42.8739 141.8191 101 306.785 D SCⅣ 16 IWTH02 39.8250 141.3826 102 389.567 C SCⅡ 17 IWTH06 40.2611 141.1709 100 431.655 C SCⅡ 18 IWTH08 40.2686 141.7831 100 304.521 D SCⅢ 19 IWTH24 39.1979 141.0118 150 486.412 C SCⅣ 20 IWTH27 39.0307 141.532 100 670.313 C SCⅠ 21 KMMH01 33.1090 130.695 100 574.631 C SCⅠ 22 KSRH06 43.2200 144.4285 237 326.193 D SCⅣ 23 KSRH07 43.1359 144.3274 222 204.104 D SCⅣ 24 KSRH10 43.2084 145.1168 255 212.875 D SCⅣ 25 MYGH13 38.6990 141.4180 100 570.591 C SCⅠ 26 NIGH11 37.1728 138.7440 205 375.000 C SCⅣ 27 NMRH04 43.3978 145.1224 216 168.103 E SCⅣ 28 SMNH12 35.1634 132.8558 101 590.200 C SCⅠ 29 TCGH12 36.6959 139.9842 120 343.678 D SCⅣ 30 TKCH08 42.4865 143.1520 100 353.208 D SCⅣ 1.2 强震动记录选取
早期研究者根据大地震中主震和余震场地反应的对比,推测场地非线性反应阈值为100~200 gal(Wen等,1994;1995)。但近年来研究表明,在中等强度地震动(PGA=20~80 gal)观测记录分析中,出现了轻微的场地非线性反应特征(Baise,2000;Régnier等,2013)。为此,本研究将30个台站获取的19002组三分量强震动记录划分为6组,各组记录峰值加速度分别为10~20 gal、20~100 gal、100~200 gal、200~300 gal和>300 gal(表2)。考虑10 gal以下的记录工程意义较小,本研究不予考虑。
表 2 不同峰值加速度分组的地震动记录数量Table 2. The number of strong-motion records in different PGA groups场地类型 台站代码 PGA/gal 10~20 20~100 100~200 200~300 >300 C AKTH02 74 54 2 0 0 AKTH13 122 79 9 0 0 AOMH17 299 106 9 4 0 HDKH01 127 60 3 0 4 IWTH02 876 667 42 11 14 IWTH06 181 85 6 0 0 IWTH24 185 112 10 3 2 IWTH27 1079 504 31 8 8 KMMH01 99 39 6 2 0 MYGH13 675 311 13 1 2 NIGH11 146 110 9 3 3 SMNH12 52 52 6 4 0 D AOMH05 417 207 15 3 0 AOMH16 428 171 9 2 0 FKSH11 622 285 12 2 3 FKSH14 635 283 18 2 2 FKSH20 393 238 21 0 2 HDKH04 119 56 4 1 2 IBRH13 1175 732 79 23 33 IBRH17 796 424 21 2 3 IBUH01 317 136 10 3 4 IWTH08 423 182 13 0 2 KSRH06 349 155 3 1 8 KSRH07 286 149 8 1 4 KSRH10 273 174 11 3 5 TCGH12 680 338 6 0 2 TKCH08 197 117 10 0 1 E AOMH13 213 86 7 0 0 IBRH10 522 248 16 2 0 NMRH04 328 150 8 0 2 1.3 强震动记录处理
利用强震动记录开展场地条件影响研究时,应尽量考虑记录的S波时段。因此,计算地震动傅里叶幅值前,需给定合理的时间窗长度,该时间窗不仅包含剪切波主要能量,且尽量避免面波出现对幅值谱造成的影响。为此,地震动记录时间窗选取为从P波初至至地震波能量达总能量的80%处(截止时间)。具体分析中,采用阿里亚斯强度(式(1))计算的地震动能量求取截止时间,并采用式(2)计算记录的信噪比(SNR),将地震动记录前15 s数据作为噪声信号,以剔除0.05~20 Hz段信噪比小于5 dB的记录,减小统计数据不合理引起的结果离散性,提高分析结果准确性。
$${I_{\rm{a}}} = \frac{{\text{π}} }{{2g}}\int_0^T {{a^2}\left(t \right){\rm{d}}t} $$ (1) 式中,Ia为地震动能量;T为地震动时长。
$${\rm{SNR}}\left(f \right) = 10\log \frac{{{A_{{\rm{signal}}}}\left(f \right)}}{{{A_{{\rm{noise}}}}\left(f \right)}}$$ (2) 式中,Asignal(f)为地震动记录的傅里叶幅值谱;Anoise(f)为噪声信号傅里叶幅值谱。
2. HVSR与SBSR差异分析
计算强震动记录HVSR和SBSR,按3个PGA分档,即10~20 gal、20~100 gal和>100 gal,并求平均值,考虑PGA>200 gal记录较少,将PGA>100 gal作为统计分档。图1所示为不同分档内HVSR、SBSR及SBSR/HVSR平均值。
由图1可知,各台站记录的HVSR、SBSR平均值在PGA<100 gal时无明显差异,在PGA>100 gal时产生了明显差异,体现了场地土层非线性特性对地震动的影响。因此,后续统计分析中不再区分10~20 gal和20~100 gal分档。
图2所示为各台站记录SBSR/HVSR平均值及±1倍标准差值。由图2可知,在整个周期范围内,SBSR/HVSR平均值均>1,即SBSR平均值大于HVSR平均值,证实了场地竖向地震动效应的存在。SBSR/HVSR平均值和±1倍标准差在0.4~20 s周期范围内近似为常量,随周期变化较小,而在0.04~0.4 s周期范围内变化显著。
图3所示为不同周期SBSR/HVSR随HVSR变化分布,由图3可知,在0.04~20 s周期范围内SBSR/HVSR随HVSR的变化存在显著规律性特征,且SBSR/HVSR与HVSR间呈对数线性相关性,这为建立考虑场地竖向地震动效应影响的修正水平/竖向谱比法提供基础。
基于上述计算与分析结果,采用对数坐标线性拟合方法,得到不同地震动强度下HVSR法与SBSR法在0.04~20 s周期范围内的定量关系:
$$\alpha \left(T \right) = \frac{{{\rm{SBSR}}\left(T \right)}}{{{\rm{HVSR}}\left(T \right)}} = a\left(T \right){\rm{HVSR}}\left(T \right) + b\left(T \right)$$ (3) 式中,T为周期;a、b为统计常数。
根据前文研究结果,得到a和b统计值,其随T变化结果如图4所示。由图4可知,a和b统计值随T变化较大,且呈上下波动性变化,尤其是a。为此,采用式(4)所示参数模型分周期段拟合a和b变化曲线:
$$ Y = \frac{{{p_1}{x^2} + {p_2}x + {p_3}}}{{{q_1}{x^2} + {q_2}x + {q_3}}} $$ (4) 式中,Y表示参数a和b;x表示以10为底的对数周期;p1、p2、p3、q1、q2、q3均表示参数模型系数。
拟合得到a和b随T变化关系曲线,如图5所示,模型系数如表3所示。
表 3 a和b模型系数取值Table 3. Coefficient values of relation of parameters a and b with period T参数 PGA/gal 周期T/s 回归系数 p1 p2 p3 q1 q2 q3 R a <100 [0.04,0.27] −0.376 −0.762 −0.391 1 2.014 1.019 0.902 [0.27,0.86] −0.404 −0.318 −0.067 1 0.768 0.154 0.957 [0.86,20.00] 0.538 −1.404 −0.354 0 1.000 0.656 0.952 ≥100 [0.04,0.20] −0.348 −0.707 −0.365 1 2.066 1.077 0.958 [0.20,0.84] 0.813 0.361 −0.277 0 1.000 1.090 0.874 [0.84,20.00] 0.879 −1.510 −0.634 0 1.000 1.799 0.789 b <100 [0.04,0.10] −0.250 −0.118 −0.072 0 1.000 0.763 0.962 [0.10,20.00] 1.124 1.103 1.114 1 2.745 3.032 0.966 ≥100 [0.04,0.10] 0.309 1.307 0.964 0 1.000 0.951 0.985 [0.10,20.00] 0.670 −0.117 0.282 1 1.120 1.607 0.992 3. 修正水平/竖向谱比法
由式(3)可得:
$$ {\rm{SBSR}}(T) = [a(T){\rm{HVSR}}(T) + b(T)]{\rm{HVSR}}(T) $$ (5) 如果将SBSR随T变化曲线SBSR(T )视为场地土层对地表地震动影响的传递函数,则利用式(5)可得到场地土层对地表地震动影响的传递函数估算结果,即本研究提出的修正水平/竖向谱比法:
$$ {\rm{MHVSR}}\left(T \right) = [a\left(T \right){\rm{HVSR}}\left(T \right) + b\left(T \right)]{\rm{HVSR}}\left(T \right) $$ (6) 4. 结语
利用日本KiK-net台网30个竖井台站强震动观测的19002组加速度记录资料,统计分析了场地SBSR与HVSR的关系,展示场地SBSR/HVSR随HVSR的变化存在显著规律性特征,且呈对数线性相关性,并进一步给出统计定量关系。在统计分析结果的基础上,提出表征场地土层对地震动影响的修正水平/竖向谱比法。利用该修正方法能更合理地得到场地土层对地震动的影响传递函数,不仅考虑了场地竖向地震动效应的影响,且对场地土非线性特性的影响有所考虑。
本研究在提出修正水平/竖向谱比法时,将地表/基底谱比随周期变化曲线视为场地土层对地表地震动影响的传递函数曲线。然而,理论分析结果表明,强震动观测获取的井下基岩处记录中还包含场地土层对井下基岩地震动的影响,即井下基岩处地震动与自由地表基岩面地震动仍存在一定差异。该差异对修正水平/竖向谱比法的影响需进行合理考虑,有待进一步研究。
-
表 1 选取台站及相关信息
Table 1. Selected stations and related information in this study
编号 台站代码 纬度N/° 经度E /° 钻井度/m VS,30/m·s−1 美国分类场地类别 日本分类场地类别 1 AKTH02 39.6634 140.5721 100 620.404 C SCⅠ 2 AKTH13 39.9819 140.4072 100 535.723 C SCⅠ 3 AOMH05 40.8564 141.1033 312 238.302 D SCⅢ 4 AOMH13 40.5794 141.4451 150 154.274 E SCⅣ 5 AOMH16 40.4624 141.0923 150 225.750 D SCⅣ 6 AOMH17 40.4624 141.3374 114 378.362 C SCⅡ 7 FKSH11 37.2006 140.3386 115 239.826 D SCⅢ 8 FKSH14 37.0264 140.9702 147 236.561 D SCⅣ 9 FKSH20 37.4911 140.9871 109 350.000 D SCⅣ 10 HDKH01 42.7031 142.2296 100 368.252 C SCⅡ 11 HDKH04 42.5126 142.0381 220 235.026 D SCⅣ 12 IBRH10 36.1112 139.9889 900 144.138 E SCⅣ 13 IBRH13 36.7955 140.5750 100 335.369 D SCⅡ 14 IBRH17 36.0864 140.3140 510 300.774 D SCⅣ 15 IBUH01 42.8739 141.8191 101 306.785 D SCⅣ 16 IWTH02 39.8250 141.3826 102 389.567 C SCⅡ 17 IWTH06 40.2611 141.1709 100 431.655 C SCⅡ 18 IWTH08 40.2686 141.7831 100 304.521 D SCⅢ 19 IWTH24 39.1979 141.0118 150 486.412 C SCⅣ 20 IWTH27 39.0307 141.532 100 670.313 C SCⅠ 21 KMMH01 33.1090 130.695 100 574.631 C SCⅠ 22 KSRH06 43.2200 144.4285 237 326.193 D SCⅣ 23 KSRH07 43.1359 144.3274 222 204.104 D SCⅣ 24 KSRH10 43.2084 145.1168 255 212.875 D SCⅣ 25 MYGH13 38.6990 141.4180 100 570.591 C SCⅠ 26 NIGH11 37.1728 138.7440 205 375.000 C SCⅣ 27 NMRH04 43.3978 145.1224 216 168.103 E SCⅣ 28 SMNH12 35.1634 132.8558 101 590.200 C SCⅠ 29 TCGH12 36.6959 139.9842 120 343.678 D SCⅣ 30 TKCH08 42.4865 143.1520 100 353.208 D SCⅣ 表 2 不同峰值加速度分组的地震动记录数量
Table 2. The number of strong-motion records in different PGA groups
场地类型 台站代码 PGA/gal 10~20 20~100 100~200 200~300 >300 C AKTH02 74 54 2 0 0 AKTH13 122 79 9 0 0 AOMH17 299 106 9 4 0 HDKH01 127 60 3 0 4 IWTH02 876 667 42 11 14 IWTH06 181 85 6 0 0 IWTH24 185 112 10 3 2 IWTH27 1079 504 31 8 8 KMMH01 99 39 6 2 0 MYGH13 675 311 13 1 2 NIGH11 146 110 9 3 3 SMNH12 52 52 6 4 0 D AOMH05 417 207 15 3 0 AOMH16 428 171 9 2 0 FKSH11 622 285 12 2 3 FKSH14 635 283 18 2 2 FKSH20 393 238 21 0 2 HDKH04 119 56 4 1 2 IBRH13 1175 732 79 23 33 IBRH17 796 424 21 2 3 IBUH01 317 136 10 3 4 IWTH08 423 182 13 0 2 KSRH06 349 155 3 1 8 KSRH07 286 149 8 1 4 KSRH10 273 174 11 3 5 TCGH12 680 338 6 0 2 TKCH08 197 117 10 0 1 E AOMH13 213 86 7 0 0 IBRH10 522 248 16 2 0 NMRH04 328 150 8 0 2 表 3 a和b模型系数取值
Table 3. Coefficient values of relation of parameters a and b with period T
参数 PGA/gal 周期T/s 回归系数 p1 p2 p3 q1 q2 q3 R a <100 [0.04,0.27] −0.376 −0.762 −0.391 1 2.014 1.019 0.902 [0.27,0.86] −0.404 −0.318 −0.067 1 0.768 0.154 0.957 [0.86,20.00] 0.538 −1.404 −0.354 0 1.000 0.656 0.952 ≥100 [0.04,0.20] −0.348 −0.707 −0.365 1 2.066 1.077 0.958 [0.20,0.84] 0.813 0.361 −0.277 0 1.000 1.090 0.874 [0.84,20.00] 0.879 −1.510 −0.634 0 1.000 1.799 0.789 b <100 [0.04,0.10] −0.250 −0.118 −0.072 0 1.000 0.763 0.962 [0.10,20.00] 1.124 1.103 1.114 1 2.745 3.032 0.966 ≥100 [0.04,0.10] 0.309 1.307 0.964 0 1.000 0.951 0.985 [0.10,20.00] 0.670 −0.117 0.282 1 1.120 1.607 0.992 -
[1] 郭明珠, 赵芳, 赵凤仙, 2013. 场地地震动局部地形效应研究进展. 震灾防御技术, 8(3): 311-318. doi: 10.3969/j.issn.1673-5722.2013.03.010Guo M. Z., Zhao F., Zhao F. X., 2013. A review of the effect of small-scale surface topography on ground motions. Technology for Earthquake Disaster Prevention, 8(3): 311-388. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.03.010 [2] 黄雅虹, 吕悦军, 彭艳菊, 2009. 国内外不同抗震设计规范中场地分类方法的内在关系研究. 震灾防御技术, 4(1): 80-90. doi: 10.3969/j.issn.1673-5722.2009.01.008Huang Y. H., Lu Y. J., Peng Y. J., 2009. Study on the relations of site classification methods in seismic design standards between china and abroad. Technology for Earthquake Disaster Prevention, 4(1): 80-90. (in Chinese) doi: 10.3969/j.issn.1673-5722.2009.01.008 [3] 李小军, 1992. 场地土层对地震地面运动影响的分析方法. 世界地震工程, 8(2): 49-60. [4] 李小军, 彭青, 2001. 不同类别场地地震动参数的计算分析. 地震工程与工程振动, 21(1): 29-36. doi: 10.3969/j.issn.1000-1301.2001.01.005Li X. J., Pen Q., 2001. Calculation and analysis of earthquake ground motion parameters for different site categories. Earthquake Engineering and Engineering Vibration, 21(1): 29-36. (in Chinese) doi: 10.3969/j.issn.1000-1301.2001.01.005 [5] 李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21-29.LI X. J., 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21-29. (in Chinese) [6] 吕悦军, 彭艳菊, 兰景岩等, 2008. 场地条件对地震动参数影响的关键问题. 震灾防御技术, 3(2): l26-l35. doi: 10.3969/j.issn.1673-5722.2008.02.003Lu Y. J., Peng Y. J., Lan J. Y., et al., 2008. Some key problems about site effects on seismic ground motion parameters. Technology for Earthquake Disaster Prevention, 3(2): 126-135. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.003 [7] 荣棉水, 李小军, 王振明等, 2016. HVSR方法用于地震作用下场地效应分析的适用性研究. 地球物理学报, 59(8): 2878-2891. doi: 10.6038/cjg20160814Rong M. S., Li X. J., Wang Z. M., et al., 2016. Applicability of HVSR in analysis of site-effects caused by earthquakes. Chinese Journal of Geophysics, 59(8): 2878-2891. (in Chinese) doi: 10.6038/cjg20160814 [8] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(2016年版). 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings (2016 Edition). Beijing: China Architecture and Building Press. (in Chinese) [9] Baise L. G., 2000. Investigations in site response from ground motion observations in vertical arrays. Berkeley: University of California. [10] Borcherdt R. D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1): 29-61. [11] Borcherdt R. D., Gibbs J. F., 1976. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66(2): 467-500. [12] Building Seismic Safety Council, 2004. 2003 Edition NEHPR recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Part 1(Provisions). Washington D C: Building Seismic Safety Council, National Institute of Building Sciences, 19-45. [13] Chen Q. F., Liu L. B., Wang W. J., et al., 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54(2): 280-287. [14] Fukushima Y., Bonilla L. F., Scotti O., et al., 2007. Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations. Journal of Earthquake Engineering, 11(5): 712-724. doi: 10.1080/13632460701457116 [15] Hwang H. H. M., Lin H. J., Huo J. R., 1997. Site coefficients for design of buildings in eastern United States. Soil Dynamics and Earthquake Engineering, 16(1): 29-40. doi: 10.1016/S0267-7261(96)00031-0 [16] Kawase H., Sánchez-Sesma F. J., Matsushima S., 2011. The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101(5): 2001-2004. doi: 10.1785/0120100263 [17] Konno K., Ohmachi T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1): 228-241. [18] Lee C. T., Cheng C. T., Liao C. W., et al., 2001. Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5): 1283-1297. [19] Lermo J., Chávez-García F. J., 1993. Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5): 1574-1594. [20] Li X. J., Jing B. B., Liu C., et al., 2019. Site classification method based on geomorphological and geological characteristics and its application in China. Bulletin of the Seismological Society of America, 109(5): 1843-1854. doi: 10.1785/0120190058 [21] Liu H. X., 2002. The great Tangshan earthquake of 1976. California: Earthquake Engineering Research Laboratory, California Institute of Technology, 171-338. [22] Nagashima F., Matsushima S., Kawase H., et al., 2014. Application of horizontal‐to‐vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K‐NET site in Tohoku, Japan. Bulletin of the Seismological Society of America, 104(5): 2288-2302. doi: 10.1785/0120130219 [23] Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of the Railway Technical Research Institute, 30(1): 25-33. [24] Pitilakis K., Riga E., Anastasiadis A., 2013. New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4): 925-966. doi: 10.1007/s10518-013-9429-4 [25] Régnier J., Cadet H., Bonilla L. F., et al., 2013. Assessing nonlinear behavior of soils in seismic site response: statistical analysis on KiK-net strong-motion data. Bulletin of the Seismological Society of America, 103(3): 1750-1770. doi: 10.1785/0120120240 [26] Seed H. B., Ugas C., Lysmer J., 1976a. Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1): 221-243. [27] Seed H. B., Murarka R., Lysmer J., et al., 1976b. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bulletin of the Seismological Society of America, 66(4): 1323-1342. [28] Seed H. B., Romo M. P., Sun J. I., et al., 1988. The Mexico earthquake of September 19, 1985-relationships between soil conditions and earthquake ground motions. Earthquake Spectra, 4(4): 687-729. doi: 10.1193/1.1585498 [29] Wen K. L., Beresnev I. A., Yeh Y. T., 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophysical Research Letters, 21(24): 2625-2628. doi: 10.1029/94GL02407 [30] Wen K. L., Beresnev I. A., Yeh Y. T., 1995. Investigation of non-linear site amplification at two downhole strong ground motion arrays in Taiwan. Earthquake Engineering & Structural Dynamics, 24(3): 313-324. [31] Wen R. Z., Ren Y. F., Zhou Z. H., et al., 2010. Preliminary site classification of free-field strong motion stations based on Wenchuan earthquake records. Earthquake Science, 23(1): 101-110. doi: 10.1007/s11589-009-0048-8 [32] Wood H. O., 1908. Distribution of apparent intensity in San Francisco. In: The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission. Washington DC: Carnegie Institution of Washington. [33] Yamazaki F., Ansary M. A., 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization. Earthquake Engineering & Structural Dynamics, 26(7): 671-689. [34] Zhang X. L., Peng X. B., Li X. J., et al., 2020. Seismic effects of a small sedimentary basin in the eastern Tibetan plateau based on numerical simulation and ground motion records from aftershocks of the 2008 Mw7.9 Wenchuan, China earthquake. Journal of Asian Earth Sciences, 192: 104257. doi: 10.1016/j.jseaes.2020.104257 [35] Zhao J. X., Irikura K., Zhang J., et al., 2006. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96(3): 914-925. doi: 10.1785/0120050124 期刊类型引用(5)
1. 刘献伟,陈苏,李小军,傅磊,胡进军,孙浩. 基于HVSR谱比动态聚类的海域场地特性研究. 岩土工程学报. 2023(01): 213-220 . 百度学术
2. 段建斌,王玉石,王立新,王宁,张立宝,丁毅. 地脉动水平/竖向谱比表征地震动场地效应的有效性及其修正. 震灾防御技术. 2023(03): 576-584 . 本站查看
3. 徐贤炜,郭履宝,仝晨阳,林吉鸿,黄龙. 基于通电导线的循迹方案. 电脑知识与技术. 2022(06): 119-121 . 百度学术
4. 田浩,胡进军,谭景阳,崔鑫,石昊. 基于特征分类排序的典型海底地震动记录研究. 震灾防御技术. 2022(02): 360-371 . 本站查看
5. 王玉石,李小军,李敏,刘艳琼,丁毅. 地震动加速度反应谱场地条件影响调整系数研究. 震灾防御技术. 2022(03): 464-472 . 本站查看
其他类型引用(7)
-