• ISSN 1673-5722
  • CN 11-5429/P

穿越克孜尔逆冲断层的输气管道抗震分析

曹毅渊 刘爱文 王芬芬 王龙 李金臣

曹毅渊, 刘爱文, 王芬芬, 王龙, 李金臣. 穿越克孜尔逆冲断层的输气管道抗震分析[J]. 震灾防御技术, 2019, 14(1): 35-41. doi: 10.11899/zzfy20190104
引用本文: 曹毅渊, 刘爱文, 王芬芬, 王龙, 李金臣. 穿越克孜尔逆冲断层的输气管道抗震分析[J]. 震灾防御技术, 2019, 14(1): 35-41. doi: 10.11899/zzfy20190104
Cao Yiyuan, Liu Aiwen, Wang Fenfen, Wang Long, Li Jinchen. Anti-seismic Analysis of Gas Pipeline Crossing through the Kezil Thrustfault Fault[J]. Technology for Earthquake Disaster Prevention, 2019, 14(1): 35-41. doi: 10.11899/zzfy20190104
Citation: Cao Yiyuan, Liu Aiwen, Wang Fenfen, Wang Long, Li Jinchen. Anti-seismic Analysis of Gas Pipeline Crossing through the Kezil Thrustfault Fault[J]. Technology for Earthquake Disaster Prevention, 2019, 14(1): 35-41. doi: 10.11899/zzfy20190104

穿越克孜尔逆冲断层的输气管道抗震分析

doi: 10.11899/zzfy20190104
基金项目: 

国家自然科学基金项目 51778588

中央级公益性科研院所基本科研业务专项 DQJB18B18

详细信息
    作者简介:

    曹毅渊, 男, 生于1983年。工程师。主要研究方向为油气储运。E-mail:caoyiyuan@petrochina.com.cn

    通讯作者:

    刘爱文, 男, 生于1973年。研究员。主要从事生命线地震工程研究。E-mail:liuaiwen@cea-igp.ac.cn

Anti-seismic Analysis of Gas Pipeline Crossing through the Kezil Thrustfault Fault

  • 摘要: 输气管道作为1种薄壁壳体结构,逆冲断层引起的管道压缩变形容易使其破坏。本文以大北南疆输气管道工程为例,探讨了穿越克孜尔逆冲断层的输气管道地震安全问题。在确定管道穿越处的断层倾角、设防断层位错量、表征管土相互作用的土弹簧参数以及钢管容许应变等参数后,采用壳有限元方法,分析了穿越克孜尔逆冲断层的输气管道变形反应。分析结果显示,管道在逆冲断层作用下以压缩应变为主,管道内的最大轴向压缩应变的幅值随着交角的减小而减小。在通过探槽等方法确定断层活动位置后,该管道若以小于或等于11°的交角通过克孜尔断裂,断层引起的最大轴向压缩应变和拉伸应变均在管道相应的容许应变范围内,满足相关规范的抗震要求。
  • 钢质管道由于强度高、对各种地形和地质条件适应性强,被广泛应用于长距离的天然气输送管道工程中。这些输气管道经常穿越地震活跃地区,需要关注其地震安全问题。震害调查结果表明,地震对管道造成的影响从轻到重依次为地震动、砂土液化和活动断层,即地震断层的位错作用造成输气管道的破坏最严重(侯忠良,1990)。按照位错方式的不同,活动断层可分为正断层、逆断层和走滑断层(左旋或右旋)。钢质管道属于1种薄壁壳体结构,具有一定的抗拉伸能力,但是受到压缩荷载作用时容易发生屈曲破坏。通过正断层时,管道变形以拉伸应变为主;通过走滑断层时,可以选择合适的交角,使管道变形也以拉伸应变为主。但当管道通过逆冲断层时,其变形反应则是以压缩应变为主。因此,在几种位错方式中,逆冲断层的位错作用对钢质输气管道造成的威胁最大。例如,在1999年的中国台湾集集地震中,穿越车笼埔逆冲断层的燃气管道大部分都遭到严重破坏。图 1为台中县霧峰乡吉峰东路埋设的1条城镇低压天然气PE管道,该管道直径110mm、壁厚8.3mm,垂直穿过车笼埔逆冲断层。在断层上盘斜向上的逆冲作用下,该天然气管道发生严重的屈曲变形,导致供气中断。

    图 1  天然气管道在集集地震逆冲断层作用下发生的屈曲破坏
    Figure 1.  Buckling failure of gas pipeline under thrust fault movement in the Jiji earthquake

    中国四川省的龙门山断裂(2008年汶川地震的发震断层)也是1条以逆冲方式为主的活动断层。龙门山断裂在汶川地震中的竖向同震位错量达6.2m(徐锡伟等,2008)。2002年建成的兰成渝管道,作为中国西南部地区重要的成品油管道,从兰州经成都到达重庆,全长1247km,兰州至江油段管径为508mm,江油至成都段管径为457mm,成都至重庆段管径323.9mm,该段穿越汶川地震灾区。1998年开工建设兰成渝管道时,基于地震安全性评价结果,选择避让而不是直接穿越龙门山断裂,因此在汶川地震发生时,管道避开了逆冲断层的位错作用,只是遭受了强地震动作用。兰成渝管道沿线最高地震烈度达到了Ⅷ度,管体保持基本完好,震后继续为灾区输送成品油,在抗震救灾工作中发挥了重要作用(史航等,2009)。

    新疆地区作为中国的能源基地,近年来在该地区建设的输油气管道工程众多。该地区也是中国地震活动强烈的地区,区内断层恰恰以逆冲断层为主,许多输油气管道工程线路无法避让,不得不通过这些逆冲断层,需要进行抗震分析。管道在断层位错作用下的抗震分析已经从最初的理论解析方法发展为以数值分析方法为主。断层位错作用下管道变形反应的理论计算方法最早是在1971年美国圣费尔南多6.6级地震断层位错造成多条跨断层的埋地管道破裂之后提出的,该方法忽略管道的弯曲刚度以及周围土体的横向压力,将断层的位错作用完全由管道的轴向变形来吸收(Newmark等,1975)。此后学者们采用索理论和梁理论对该方法进行了不断完善(Kennedy等,1977Wang等,1985刘爱文等,2002)。值得注意的是,这些理论计算方法均针对走滑断层,即在断层位错量较小且管道受拉的情况下,可采用理论解析方法对通过活动断层的管道进行抗震计算。对于管道穿越逆冲断层这一更加复杂的工况,上述理论计算方法不再适用,需要采用有限元模型的数值分析方法(Takada等,1998郭恩栋等,1999冯启民等,2001)。

    目前,中国输油气管道工程的抗震设计已经从应力设计发展到应变设计(刘学杰等,2005)。本文以穿越克孜尔逆冲断层的大北南疆利民输气管道为例,探讨输气钢质管道在逆冲断层位错作用下的地震安全问题。

    大北南疆利民输气管道工程位于新疆阿克苏地区拜城县和温宿县境内,管道起点为拜城县大北输气站,终点为温宿县南疆利民管道阿克苏末站。管道穿越的克孜尔断层位于塔里木盆地西北边缘,区域构造活动主要表现为天山地块逆冲于塔里木地块之上(田勤俭等,2006)。克孜尔断层西起新疆拜城县赛里木南,沿却勒塔格山北麓延伸,向东经渭干河、盐水沟和库车河,延伸到波斯坦附近。克孜尔断层的东端与东却勒塔格断层交会处,曾于1949年2月24日发生过轮台7¼级地震,造成3930间房屋倒塌,死12人、伤20人,山石崩落使道路阻塞,赛里木、新和、沙雅一带河滩地裂缝长数米至数十米,宽20cm左右。

    克孜尔断层总体走向NEE,断层以逆冲活动为主,兼左旋走滑断层,断层面总体南倾,断层倾角范围为10°—80°。克孜尔断层长度110km。考虑到断层面倾角、错动性质、未来可能发生的错动量等参数在断层各处存在差异,需要通过野外调查和探槽工作,确定输气管道穿越处断层的具体参数。在利用卫星影像进行断层识别的基础上,对管道线路附近进行了详细的野外现场地质调查。根据断层出露的情况,沿着断层出露的迹线选择合适位置进行了探槽开挖,进一步确定与管道相交处的断层倾角、断层的设防位错量(图 2(a))。如图 2(b)所示,上新世N2(距今258.8×104—530×104)黄褐色砂砾岩因为克孜尔断层的逆冲作用,覆盖到了晚更新世Q3(距今10×104—12.6×104a)砂砾石层之上。上新世地层为黄褐色砂砾岩,晚更新世砾石层呈灰色、灰黄色互层状,具水平层理,夹砂层透镜体。沿着断层面,断层倾角变化较大,局部甚至近直立,显示出推覆构造体的基本特征。根据探槽开挖结果和已有的关于克孜尔断裂带的研究结果,确定了管道穿越处的断层位错方式表现为纯逆冲断层。根据管道工程场地地震安全性评价工作的结果1,克孜尔断层在管道穿越处的倾角为60°,其未来100年内沿断层倾向的最大突发位错量为0.8m,并作为该输气管道的设防位错量。

    图 2  探槽揭示的克孜尔逆冲断层位错方式
    Figure 2.  Fault movement model of Kezil thrust fault dislocation method revealed by trench

    1 常想德,胡伟华,2016.大北南疆利民3号阀室输气管道工程场地地震安全性评价报告.新疆防御自然灾害研究所.

    在断层位移作用下,油气管道与周围场地土之间存在相互作用。管土之间的相互作用一般采用土弹簧模型进行模拟,包括管轴方向、水平横向和垂直方向土弹簧,垂直方向土弹簧又分为垂直向上和垂直向下土弹簧,如图 3所示。这3个土弹簧的参数由管道的管径大小、埋设深度、场地土的种类、平均密度、粘聚力和内摩擦角等确定(中华人民共和国住房和城乡建设部,2009)。

    图 3  管土相互作用的土弹簧模型
    Figure 3.  Soil spring model characterizing pipe-soil interaction

    管道与克孜尔断层交汇处采用宽管沟敷设,管道埋设深度为管顶1.2m。以中密度砂砾为主进行管沟回填,容重ρ=21kN/m3,内摩擦角$φ$=25°,粘聚力c=11.0kPa。参考现行抗震规范的规定(中华人民共和国住房和城乡建设部,2009),管土相互作用的3个方向土弹簧参数按照中密砂计算,结果如表 1所示。

    表 1  3个方向土弹簧参数
    Table 1.  Three-direction soil spring parameters
    土弹簧参数 管轴方向 水平横向 垂直方向(向上) 垂直方向(向下)
    最大作用力/N·m-1 fs=1.1×104 Pu=8.8×105 qu=4.1×104 qul=2.5×105
    屈服位移/m Zu=0.004 Xu=0.058 Yu=0.018 Yul=0.051
    下载: 导出CSV 
    | 显示表格

    管道的容许应变包括容许拉伸应变和容许压缩应变。如果依照早期的石油天然气行业标准,管道的容许拉伸应变等于X65钢材的塑性屈服应变4%(国家发展和改革委员会,2004)。考虑到管道在现场焊接可能出现表面型缺欠,钢管及组焊管段的极限拉伸应变应根据可靠的断裂力学分析和物理试验确定,并应考虑裂纹、缺欠、焊缝和热影响区以及温度、应变速率、初始应变、应变时效等常规因素对力学性能的影响。本文主要考虑钢管的焊接表面性缺欠,根据规范推荐的相关计算公式,得到大北南疆管道的容许拉伸应变为1.29%。

    当管道遭受压缩时,由于局部屈服,管壁会出现皱褶。薄壳起皱褶理论上开始于1.2倍的径厚比。Wilson和Newmark经试验后指出,实际圆柱体会在理论应变的1/2—1/4时开始起皱,但是起皱并不意味着破坏。在无严重应力集中或焊缝缺陷的情况下,管道能够承受4—6倍的理论应变值而在压缩褶皱处不发生破裂。但是一旦发生褶皱,进一步的变形都将集中在褶皱处。因此,为了管道的安全,将容许压缩应变值设定为管道开始发生褶皱的压缩应变值,即:

    $$ {[{\varepsilon _c}]_F} = \frac{1}{4} \times 1.2\delta /D = 0.3\delta /D $$ (1)

    其中,δ为管壁的厚度,D为管道的平均直径。大北南疆管道直径为508mm,通过断裂带两侧采用壁厚12.7mm的钢管。由上述公式得到大北南疆管道的容许压缩应变为0.75%。

    通过活动断层的管道,在断层错动作用下管道受压缩(包括管道通过逆冲断层和管道与断层交角大于90°的2种情况),应采用有限元模型进行抗震分析(中华人民共和国住房和城乡建设部,2009)。有限元模型包括梁有限元模型和壳有限元模型。由于管道为一圆柱形薄壳结构,受压缩荷载时在其横截面内容易产生大变形的屈曲现象,用梁有限元模型进行分析比较困难。因此,学者们一般采用壳有限元模型模拟埋地管道在断层作用下的反应(刘爱文等,2005金浏等,2010赵雷等,2010)。本文采用了包含等效边界的壳有限元分析模型(刘爱文等,2004)对大北南疆管道在逆冲断层作用下的反应进行分析。假设逆冲断层的下盘保持不动、管道穿越角度为10°,在上述设防的逆冲位错作用下,输气管道的轴向应变分布如图 4所示。

    图 4  穿越断层交角为10°时管道的轴向拉伸应变分布
    Figure 4.  Axial tensile strain distribution with the crossing fault angle of 10°

    根据地震安全性评价的结果,断层的上盘沿着断层面倾角$φ$=60°向上滑移Δ=0.8m。如果管道垂直通过克孜尔断层,即与断层的交角θ=90°,断层沿管轴方向的压缩位移为Δcos(60°)sin(θ)=0.4m,接近0.8倍的管径,管道产生的压缩应变将严重超过其容许压缩应变。通过改变管道通过断层的交角,可以减少管轴方向的压缩位移,从而可以使得管道的压缩应变小于管材的容许压缩应变。本文共分析了13种工况,管道通过断层的交角0.02°—90°,管道的最大轴向拉伸应变(以正值表示)和最大轴向压缩应变(以负值表示)的有限元分析结果见表 2。如图 5所示,壳有限元模型分析结果表明管道在逆冲断层作用下以压缩应变为主,特别是交角较大时。管道内的最大轴向压缩应变的幅值随着交角的增大而迅速增大,管道内的最大轴向拉伸应变的幅值随着交角的增大趋向减少。当大北南疆管道以小于或等于11°的交角通过克孜尔断层时,断层引起的最大轴向压缩应变和拉伸应变均在管道相应的容许应变范围内。

    表 2  管道以不同的交角穿越逆冲断层的分析结果
    Table 2.  Analysis result of pipeline crossing thrust fault with different crossing angles
    工况 交角/° 最大轴向拉伸应变/% 容许拉伸应变/% 最大轴向压缩应变/% 容许压缩应变/%
    1 0.02 0.432 1.29 -0.342 -0.75
    2 2 0.421 1.29 -0.381 -0.75
    3 6 0.399 1.29 -0.518 -0.75
    4 10 0.388 1.29 -0.661 -0.75
    5 11 0.386 1.29 -0.703 -0.75
    6 12 0.384 1.29 -0.7502 -0.75
    7 13 0.383 1.29 -0.7915 -0.75
    8 16 0.382 1.29 -0.887 -0.75
    9 20 0.383 1.29 -1.01 -0.75
    10 25 0.384 1.29 -1.18 -0.75
    11 30 0.383 1.29 -1.36 -0.75
    12 60 0.357 1.29 -2.09 -0.75
    13 90 0.340 1.29 -2.31 -0.75
    下载: 导出CSV 
    | 显示表格
    图 5  管轴方向的应变随着穿越断层交角的变化曲线
    Figure 5.  The curve of axial pipe strain with the crossing fault angle

    本文采用壳有限元模型,分析了大北南疆利民输气管道以不同角度穿越克孜尔逆冲断层时的地震安全问题。通过野外地震地质调查、钻孔以及探槽等技术手段,确定管道穿越处的断层倾角、设防断层位错量和场地土参数。壳有限元分析结果表明,管道在逆冲断层的作用下的变形反应主要以压缩应变为主。在其它参数都不变的情况下,管道以较小的穿越角度通过逆冲断层,可以有效地减少断层在管轴方向引起的压缩位移量,从而使得管道的压缩应变反应在管道的容许压缩应变范围内。

  • 图  1  天然气管道在集集地震逆冲断层作用下发生的屈曲破坏

    Figure  1.  Buckling failure of gas pipeline under thrust fault movement in the Jiji earthquake

    图  2  探槽揭示的克孜尔逆冲断层位错方式

    Figure  2.  Fault movement model of Kezil thrust fault dislocation method revealed by trench

    图  3  管土相互作用的土弹簧模型

    Figure  3.  Soil spring model characterizing pipe-soil interaction

    图  4  穿越断层交角为10°时管道的轴向拉伸应变分布

    Figure  4.  Axial tensile strain distribution with the crossing fault angle of 10°

    图  5  管轴方向的应变随着穿越断层交角的变化曲线

    Figure  5.  The curve of axial pipe strain with the crossing fault angle

    表  1  3个方向土弹簧参数

    Table  1.   Three-direction soil spring parameters

    土弹簧参数 管轴方向 水平横向 垂直方向(向上) 垂直方向(向下)
    最大作用力/N·m-1 fs=1.1×104 Pu=8.8×105 qu=4.1×104 qul=2.5×105
    屈服位移/m Zu=0.004 Xu=0.058 Yu=0.018 Yul=0.051
    下载: 导出CSV

    表  2  管道以不同的交角穿越逆冲断层的分析结果

    Table  2.   Analysis result of pipeline crossing thrust fault with different crossing angles

    工况 交角/° 最大轴向拉伸应变/% 容许拉伸应变/% 最大轴向压缩应变/% 容许压缩应变/%
    1 0.02 0.432 1.29 -0.342 -0.75
    2 2 0.421 1.29 -0.381 -0.75
    3 6 0.399 1.29 -0.518 -0.75
    4 10 0.388 1.29 -0.661 -0.75
    5 11 0.386 1.29 -0.703 -0.75
    6 12 0.384 1.29 -0.7502 -0.75
    7 13 0.383 1.29 -0.7915 -0.75
    8 16 0.382 1.29 -0.887 -0.75
    9 20 0.383 1.29 -1.01 -0.75
    10 25 0.384 1.29 -1.18 -0.75
    11 30 0.383 1.29 -1.36 -0.75
    12 60 0.357 1.29 -2.09 -0.75
    13 90 0.340 1.29 -2.31 -0.75
    下载: 导出CSV
  • 常想德, 胡伟华, 2016.大北至南疆利民3号阀室输气管道工程场地地震安全性评价报告.乌鲁木齐: 新疆防御自然灾害研究所.
    冯启民, 赵林, 2001.跨越断层埋地管道屈曲分析.地震工程与工程振动, 21(4):81-87. http://cdmd.cnki.com.cn/Article/CDMD-10615-1016098645.htm
    郭恩栋, 冯启民, 1999.跨断层埋地钢管道抗震计算方法研究.地震工程与工程振动, 19(4):43-47. doi: 10.3969/j.issn.1000-1301.1999.04.007
    国家发展和改革委员会, 2004.SY/T 0450-2004输油(气)钢质管道抗震设计规范.北京:石油工业出版社.
    侯忠良, 1990.地下管线抗震.北京:学术书刊出版社.
    金浏, 李鸿晶, 2010.穿越逆冲断层的埋地管道非线性反应分析.防灾减灾工程学报, 30(2):130-134. http://d.old.wanfangdata.com.cn/Periodical/dzxk201002003
    刘爱文, 张素灵, 胡聿贤等, 2002.地震断层作用下埋地管线的反应分析.地震工程与工程振动, 22(2):22-27. doi: 10.3969/j.issn.1000-1301.2002.02.004
    刘爱文, 胡聿贤, 赵凤新等, 2004.地震断层作用下埋地管线壳有限元分析的等效边界方法.地震学报, 26(增刊):141-147.
    刘爱文, 胡聿贤, 李小军等, 2005.大口径埋地钢管在地震断层作用下破坏模式的研究.工程力学, 22(3):82-87. doi: 10.3969/j.issn.1000-4750.2005.03.016
    刘学杰, 孙绍平, 2005.地下管道穿越断层的应变设计方法.特种结构, 22(2):81-85. doi: 10.3969/j.issn.1001-3598.2005.02.028
    史航, 王丽, 栾鲁滨, 2009.兰成渝管道的抗震设计.油气储运, 28(10):57-59. http://d.old.wanfangdata.com.cn/Periodical/yqcy200910016
    田勤俭, 丁国瑜, 郝平, 2006.南天山及塔里木北缘构造带西段地震构造研究.地震地质, 28(2):213-223. doi: 10.3969/j.issn.0253-4967.2006.02.005
    徐锡伟, 闻学泽, 叶建青等, 2008.汶川MS 8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629. http://d.old.wanfangdata.com.cn/Periodical/dzdz200803003
    赵雷, 唐晖, 彭小波等, 2010.埋地钢管在逆断层作用下失效模式研究.应用基础与工程科学学报, 18(增刊):111-118. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX2010S1018.htm
    中华人民共和国住房和城乡建设部, 2009.GB 50470-2008油气输送管道线路工程抗震技术规范.北京:中国计划出版社.
    Kennedy R. P., Chow A. W., Williamson R. A., 1977. Fault movement effects on buried oil pipeline. Transportation Engineering Journal of ASCE, 103(5):617-633. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004190648
    Newmark N. M., Hall W. J., 1975. Pipeline design to resist large fault displacement. Proceedings of U.S. National Conference on Earthquake Engineering. Ann Arbor MI, 416-425. http://cn.bing.com/academic/profile?id=cd01ed1004275d92058805477f7c872c&encoded=0&v=paper_preview&mkt=zh-cn
    Takada S., Liang J. W., Li T. Y., 1998. Shell model response of buried pipelines to large fault movements. Journal of Structural Engineering, JSCE, 44A:1637-1646. http://cn.bing.com/academic/profile?id=4968f02614fabf0188ca337191357d9f&encoded=0&v=paper_preview&mkt=zh-cn
    Wang L. R. L., Yeh Y. H., 1985. A refined seismic analysis and design of buried pipeline for fault movement. Earthquake Engineering & Structural Dynamics, 13(1):75-96. http://cn.bing.com/academic/profile?id=f8aa415db8fb566e712da4dee2b8922e&encoded=0&v=paper_preview&mkt=zh-cn
  • 期刊类型引用(3)

    1. 揭琳锋,曹能健,施培宏. 内肋增强聚乙烯螺旋波纹管的抗震性能分析. 管道技术与设备. 2024(05): 48-52 . 百度学术
    2. 吴果,孙浩越,吕丽星,冉洪流,周庆,周介元. 2022年青海门源M_S6.9地震后冷龙岭断裂未来强震的水平位错量评估. 震灾防御技术. 2022(02): 308-315 . 本站查看
    3. 王雯悦,伍颖,尤潇,陈朗. 基于改进Borda法与属性识别的山区输气管道地震易损性评价. 油气储运. 2021(11): 1265-1271 . 百度学术

    其他类型引用(1)

  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  18
  • PDF下载量:  11
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-08-17
  • 刊出日期:  2019-03-01

目录

/

返回文章
返回