Analytic Solution for Diffraction of Plane P Waves by a Circular Alluvial Valley in Wedge-shaped Space
-
摘要: 基于大圆弧假定,利用傅立叶-贝塞尔(Fourier-Bessel)级数波函数展开法,给出了含圆弧形沉积的楔形空间对平面P波的散射解析解。为方便构造地表面引起的散射波场,本文利用2个大圆弧面来模拟地表面,由连续性边界条件建立方程并求解得出该问题的解析解。算例结果表明,楔形空间沉积附近地表的动力响应特征依赖于入射波频率、入射角度、沉积内外介质特性与楔形夹角等因素,且位移放大效应较半空间情况更为显著。Abstract: An analytical solution was derived in this paper to study the diffraction of plane P waves by a circular alluvial valley in wedge-shaped space on the basis of large circle assumption with Fourier-Bessel series expansion. In order to construct the scattering field, the ground surface was simulated with two large curved surfaces. An equation was established with continuous boundary conditions and the analytic solution was derived. The numerical results indicate that the surface displacement characteristics around the alluvial valley in wedge-shaped space depend on the frequency of the incident wave, the angle of incidence, the material properties of the media and the angle of the wedge. The displacement amplification effect on ground motion is more significant than that of the half space.
-
Key words:
- Wedge-shaped space /
- Alluvial valley /
- Plane P-Waves /
- Scattering /
- Analytical solution
-
引言
局部不规则或不均匀场地对地震波的放大作用是近年来颇为引人关注的研究课题之一。破坏性地震的震害调查结果让人们认识到了这一问题的存在,强震记录的分析证实了场地条件对地震动的影响。我国从20世纪60年代开始关注此类问题的研究(周锡元,1965;胡聿贤等,1980)。1970年通海地震发生在云南通海、建水、峨山3个县交界的山区,位于局部孤立突出地形上的小山村和平地上同类地基的村庄相比,震害一般均较重。1974年云南永善-大关地震中,坐落于弧突山梁之上的芦永湾六队受地震破坏比较严重,且震害因所处位置地形不同差异明显:弧突形势最明显的端部破坏最重,烈度高达Ⅸ度;弧突形势不明显的鞍部破坏较轻,烈度仅为Ⅶ度。1976年唐山地震中也有类似的例子,如位于迁西县景忠山顶部的庙宇式建筑大多严重破坏和倒塌,可评为Ⅸ度;位于山脚周围的7个村庄的烈度普遍为Ⅵ度,在高差约300m的山顶与山底,烈度可相差3度之多。在2008年汶川地震中,位于自贡西山公园山脊地形上的强震动观测台阵记录到的数据也证明了山脊地形山顶对地震波的放大效应要远大于山脚(杨宇等,2011)。
局部地形对地震动影响问题的理论分析方法可以分为解析法(Trifunac,1971;Wong等,1974;Todorovska等,1991;Yuan等,1995;梁建文等, 2000, 2001)和数值法(Boore等,1971;Dravinski,1983;杜修力等,1992;Sánchez-Sesma等,1993;廖振鹏,2002)。解析法主要有波函数展开法、分离变量法、正交函数法、傅立叶变换和维纳-霍普夫(Wiener-Hopf)方法等;数值法包括有限元法、有限差分法、边界元法、有限元-边界元、有限元-有限差分、离散波速法-有限元-有限差分等混合方法。原则上讲,数值法可解决各种复杂场地的动力响应问题。但是,解析法在问题本质的分析方面有着数值法无可替代的作用,而且解析法还可用来检验数值方法的精度。
我国重庆、青岛、大连等地有大量建筑座落在山坡、山顶或者近海高岸上,宏观上,此类地形一般可简化为楔形或阶梯场地。已有的解析法研究一般基于半空间假定,楔形空间同半空间相比有着本质的区别,在问题的处理上也更复杂。目前,对于楔形空间的研究成果较少,且均针对SH波入射,如MacDonald(1902)利用贝塞尔(Bessel)函数的展开给出了楔形地形在全空间中解的表达式;Sánchez-Sesma(1985)利用MacDonald给出的公式研究了SH波在楔形空间中的衍射;Lee等(1996a,1996b)研究了平面SH波在顶点处有圆弧形峡谷的楔形地形中的衍射以及平面SH波在顶点处有圆弧形沉积的楔形地形中的衍射;Dermendjian等(2003a,2003b)采用矩量法研究了楔形空间中任意形状凹陷地形和刚性基础对SH波的散射;史文谱等(2006, 2007)则采用复变函数法分别求解了楔形空间中(直角情况)固定圆形夹杂和圆孔对SH波的散射;刘中宪等(2010a, 2010b)研究了楔形空间中圆弧形沉积对平面SH波的散射解析解以及楔形空间中圆弧形凹陷对平面SH波的散射解析解。
综上所述,目前的研究成果主要针对SH波的散射问题。对于P、SV这样的矢量波,由于它们在边界上会出现波形转换,严格满足楔形空间边界条件的散射波函数难以精确构造,问题比SH波要复杂的多,因此研究成果较少(杨宇,2005)。本文采用2个大圆弧面分别模拟楔形空间的2个表面,使得满足边界条件的散射波函数易于构造且边界条件易于处理,给出了楔形空间中圆弧形沉积对平面P波的散射解析解,以期填补解析解库的空白。
1. 模型与求解
图 1所示模型为一楔形空间,斜面与水平面夹角为θ0,在其顶点周围镶嵌圆弧形沉积河谷,圆弧沉积的圆心在楔形的顶点O,圆弧沉积半径为a。沉积介质和楔形空间介质均为弹性、均匀和各向同性,它们的材料性质由${\mu _v}$、${\mu _s}$和${\rho _v}$、${\rho _s}$、${\lambda _v}$、${\lambda _s}$确定,$\mu $为介质的剪切模量,$\rho $为介质的密度,$\lambda $为拉梅常数,下标$v$代表沉积介质,$s$代表楔形空间。一圆频率为$\omega $的平面P波以角度${\theta _\alpha }$入射,在直角坐标系Oxy中可以用势函数表示:
$$ {\phi ^{(i)}}(x, y) = \exp [i{k_{s\alpha }}(x\sin {\theta _\alpha } - y\cos {\theta _\alpha }) - i\omega t] $$ (1) 其波长为$ {\lambda _{s\alpha }} = 2{\rm{ \mathit{ π} }}/{k_{s\alpha }} $,纵波波数$ {k_{s\alpha }} = \omega /{\alpha _s} $,i表示虚数单位,t为时间坐标。
为简化书写,在下面的分析中将时间因子$ {\rm{exp}}(- i\omega t) $略去,则式(1)可表示为:
$$ {\phi ^{(i)}}(x, y) = \exp [i{k_{s\alpha }}(x\sin {\theta _\alpha } - y\cos {\theta _\alpha })] $$ (2) 入射P波在界面Ⅰ、Ⅱ反射后的反射波既有P波也有SV波,在界面Ⅰ的反射P波和SV波势函数可分别表示为:
$$ \phi _1^{(r)}(x, y) = {k_1}\exp [i{k_{s\alpha }}(x\sin {\theta _\alpha } + y\cos {\theta _\alpha })] $$ (3) $$ \psi _1^{(r)}(x, y) = {k_2}\exp [i{k_{s\beta }}(x\sin {\theta _\beta } + y\cos {\theta _\beta })] $$ (4) 其中,横波波数$ {k_{s\beta }} = \omega /{\beta _s} $,k1和k2为反射系数:
$$ {k_1} = \frac{{\sin 2{\theta _\alpha }\sin 2{\theta _\beta } - {{({\alpha _s}/{\beta _s})}^2}{{\cos }^2}2{\theta _\beta }}}{{\sin 2{\theta _\alpha }\sin 2{\theta _\beta } + {{({\alpha _s}/{\beta _s})}^2}{{\cos }^2}2{\theta _\beta }}} $$ (5) $$ {k_2} = \frac{{ - 2\sin 2{\theta _\alpha }\cos 2{\theta _\beta }}}{{\sin 2{\theta _\alpha }\sin 2{\theta _\beta } + {{({\alpha _s}/{\beta _s})}^2}{{\cos }^2}2{\theta _\beta }}} $$ (6) 其中,${\theta _\beta }$为SV波在界面Ⅰ的反射角,${\theta _\alpha }$和${\theta _\beta }$满足$ \sin {\theta _\alpha }/{\alpha _s} = \sin {\theta _\beta }/{\beta _s} $。
入射P波在界面Ⅱ的反射P波和SV波势函数可分别表示为:
$$ {\phi _2}^{(r)}{\rm{(}}x'{\rm{, }}y') = \left\{ \begin{array}{l} {{k'}_1}{\rm{exp}}\left[ {i{k_{s\alpha }}\left({x'{\rm{sin}}{{\theta '}_\alpha } + y'{\rm{cos}}{{\theta '}_\alpha }} \right)} \right], \;\;\;\;\;\;{\theta _\alpha } > {\theta _0}\\ {{k'}_1}{\rm{exp}}\left[ {i{k_{s\alpha }}\left({ - x'{\rm{sin}}{{\theta '}_\alpha } + y'{\rm{cos}}{{\theta '}_\alpha }} \right)} \right], \;\;\;{\theta _\alpha } \le {\theta _0} \end{array} \right. $$ (7) $$ {\psi _2}^{(r)}{\rm{(}}x'{\rm{, }}y') = \left\{ \begin{array}{l} {{k'}_{\rm{2}}}{\rm{exp[}}i{k_{s\beta }}(x'{\rm{sin}}{{\theta '}_\beta } + y'{\rm{cos}}{{\theta '}_\beta }){\rm{]}}, \;\;\;\;\;\;{\theta _\alpha } > {\theta _0}\\ {{k'}_{\rm{2}}}{\rm{exp[}}i{k_{s\beta }}(- x'{\rm{sin}}{{\theta '}_\beta } + y'{\rm{cos}}{{\theta '}_\beta }){\rm{]}}, \;\;\;\;{\theta _\alpha } \le {\theta _0} \end{array} \right. $$ (8) 其中,$ {k'_1}$和${k'_{\rm{2}}} $为反射系数:
$$ {k'_1} = \frac{{{\rm{sin}}2{{\theta '}_\alpha }{\rm{sin}}2{{\theta '}_\beta } - {{({\alpha _s}/{\beta _s})}^2}{\rm{co}}{{\rm{s}}^{\rm{2}}}2{{\theta '}_\beta }}}{{{\rm{sin}}2{{\theta '}_\alpha }{\rm{sin}}2{{\theta '}_\beta } + {{({\alpha _s}/{\beta _s})}^2}{\rm{co}}{{\rm{s}}^{\rm{2}}}2{{\theta '}_\beta }}} $$ (9) $$ {k'_2} = \left\{ \begin{array}{l} \frac{{ - 2{\rm{sin}}2{{\theta '}_\alpha }{\rm{cos}}2{{\theta '}_\beta }}}{{{\rm{sin}}2{{\theta '}_\alpha }{\rm{sin}}2{{\theta '}_\beta } + {{({\alpha _s}/{\beta _s})}^2}{\rm{co}}{{\rm{s}}^{\rm{2}}}2{{\theta '}_\beta }}}, \ \ \ \ \ {\theta _\alpha } > {\theta _0}\\ \frac{{2{\rm{sin}}2{{\theta '}_\alpha }{\rm{cos}}2{{\theta '}_\beta }}}{{{\rm{sin}}2{{\theta '}_\alpha }{\rm{sin}}2{{\theta '}_\beta } + {{({\alpha _s}/{\beta _s})}^2}{\rm{co}}{{\rm{s}}^{\rm{2}}}2{{\theta '}_\beta }}}, \ \ \ \ \ {\theta _\alpha } \le {\theta _0} \end{array} \right. $$ (10) 其中,${\theta '_\alpha }$为P波在界面Ⅱ的反射角,${\theta '_\beta }$为SV波在界面Ⅱ的反射角,${\theta '_\alpha }$和${\theta '_\beta }$满足$ \text{sin}{{{\theta }'}_{\alpha }}\text{/}{{\alpha }_{s}}= $ ${\text{sin}}{\theta '_\beta }{\text{/}}{\beta _s}$,${\theta _\alpha }$和${\theta '_\alpha }$满足$ {{{\theta }'}_{\alpha }}=\left| {{\theta }_{\alpha }}-{{\theta }_{0}} \right| $。
为方便分析,将入射P波和2个界面上的反射P波表达式(2)、(3)、(7)转化为极坐标系(r,θ)下的形式,合并后再进一步展成傅立叶-贝塞尔(Fourier-Bessel)级数形式:
$$ {\phi ^{(i)}}(r, \theta) + \phi _1^{(r)}(r, \theta) + \phi _2^{(r)}(r, \theta) = \sum\limits_{n = 0}^\infty {{J_n}({k_{s\alpha }}r)} ({A_{0, n}}\cos n\theta + {B_{0, n}}\sin n\theta) $$ (11) 其中,
$$ \begin{array}{l} \left\{ \begin{array}{l} {A_{0, n}}\\ {B_{0, n}} \end{array} \right\} = {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{cos}}n{\theta _\alpha }\\ {\rm{sin}}n{\theta _\alpha } \end{array} \right\}[ \pm {(- 1)^n} + {k_1}] + {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{cos}}n({\theta _0} - {{\theta '}_\alpha })\\ {\rm{sin}}n({\theta _0} - {{\theta '}_\alpha }) \end{array} \right\}(\pm {{k'}_1}), \;\;\;{\theta _\alpha } > {\theta _0}\\ \left\{ \begin{array}{l} {A_{0, n}}\\ {B_{0, n}} \end{array} \right\} = {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{cos}}n{\theta _\alpha }\\ {\rm{sin}}n{\theta _\alpha } \end{array} \right\}[ \pm {(- 1)^n} + {k_1}] + {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{cos}}n({\theta _0} - {{\theta '}_\alpha })\\ {\rm{sin}}n({\theta _0} + {{\theta '}_\alpha }) \end{array} \right\}(\pm {{k'}_1}), \;\;\;{\theta _\alpha } \le {\theta _0} \end{array} $$ (12) 将2个界面上的反射SV波表达式(4)、(8)转化为极坐标系(r,θ)下的形式,合并再进一步展成Fourier-Bessel级数形式:
$$ \psi _1^{(r)}(r, \theta) + \psi _2^{(r)}(r, \theta){\rm{ = }}\sum\limits_{n{\rm{ = }}0}^\infty {{J_n}({k_{s\beta }}r)} ({C_{0, n}}\sin n\theta + {D_{0, n}}\cos n\theta) $$ (13) 其中,
$$ \begin{array}{l} \left\{ \begin{array}{l} {C_{0, n}}\\ {D_{0, n}} \end{array} \right\}{\rm{ = }}{\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{sin}}n{\theta _\beta }\\ {\rm{cos}}n{\theta _\beta } \end{array} \right\}{k_2} + {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{sin}}n({\theta _0} - {{\theta '}_\beta })\\ {\rm{cos}}n({\theta _0} - {{\theta '}_\beta }) \end{array} \right\}(\mp {{k'}_2}), \;\;\;{\theta _\alpha } > {\theta _0}\\ \left\{ \begin{array}{l} {C_{0, n}}\\ {D_{0, n}} \end{array} \right\}{\rm{ = }}{\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{sin}}n{\theta _\beta }\\ {\rm{cos}}n{\theta _\beta } \end{array} \right\}{k_2} + {\varepsilon _n}{i^n}\left\{ \begin{array}{l} {\rm{sin}}n({\theta _0} - {{\theta '}_\beta })\\ {\rm{cos}}n({\theta _0}{\rm{ = }}{{\theta '}_\beta }) \end{array} \right\}(\mp {{k'}_2}), \;\;\;\;{\theta _\alpha } \le {\theta _0} \end{array} $$ (14) 当n=0时,$ {\varepsilon _n} = 1 $;而当n≥1时,$ {\varepsilon _n} = 2 $(下同)。
为了便于坐标转换,本文采用2个半径非常大的圆弧(图 1)来模拟楔形空间表面。用圆心在O1、半径为d的大圆弧模拟界面Ⅰ,圆心在O2、半径为d的大圆弧模拟界面Ⅱ,2个大圆弧的交点为O。
下面首先分析楔形空间中的散射波,楔形空间中存在着因沉积介质与楔形空间交界面而产生的散射P波${\phi _{s3}}(r, \theta)$和SV波${\psi _{s3}}(r, \theta)$,因楔形地形及大圆弧近似假定而产生的散射P波${\phi _{s1}}({r_1}, {\theta _1})$、${\phi _{s2}}({r_2}, {\theta _2})$和SV波${\psi _{s1}}({r_1}, {\theta _1})$、${\psi _{s2}}({r_2}, {\theta _2})$,它们的Fourier-Bessel形式分别表示为:
$$ {\phi _{s3}}(r, \theta) = \sum\limits_{n = 0}^\infty {H_n^{(1)}({k_{s\alpha }}r)} ({A_{s3, n}}\cos n\theta + {B_{s3, n}}\sin n\theta) $$ (15) $$ {\psi _{s3}}(r, \theta) = \sum\limits_{n = 0}^\infty {H_n^{(1)}({k_{s\beta }}r)} ({C_{s3, n}}\sin n\theta + {D_{s3, n}}\cos n\theta) $$ (16) $$ {\phi _{s1}}({r_1}, {\theta _1}) = \sum\limits_{m = 0}^\infty {{J_m}({k_{s\alpha }}{r_1})} (A_{s1, m}^{(1)}\cos m{\theta _1} + B_{s1, m}^{(1)}\sin m{\theta _1}) $$ (17) $$ {\psi _{s1}}({r_1}, {\theta _1}) = \sum\limits_{m = 0}^\infty {{J_m}({k_{s\beta }}{r_1})} (C_{s1, m}^{(1)}\sin m{\theta _1} + D_{s1, m}^{(1)}\cos m{\theta _1}) $$ (18) $$ {\phi _{s2}}({r_2}, {\theta _2}) = \sum\limits_{L = 0}^\infty {{J_L}({k_{s\alpha }}{r_2})} (A_{s2, L}^{(2)}\cos L{\theta _2} + B_{s2, L}^{(2)}\sin L{\theta _2}) $$ (19) $$ {\psi _{s2}}({r_2}, {\theta _2}) = \sum\limits_{L = 0}^\infty {{J_L}({k_{s\beta }}{r_2})} (C_{s2, L}^{(2)}\sin L{\theta _2} + D_{s2, L}^{(2)}\cos L{\theta _2}) $$ (20) 其次,沉积介质中存在着因沉积介质与楔形空间交界面而产生的散射P波${\phi _{v3}}(r, \theta)$和SV波${\psi _{v3}}(r, \theta)$,因楔形地形及大圆弧近似假定而产生的散射P波${\phi _{v1}}({r_1}, {\theta _1})$、${\phi _{v2}}({r_2}, {\theta _2})$和SV波${\psi _{v1}}({r_1}, {\theta _1})$、${\psi _{v2}}({r_2}, {\theta _2})$,它们的Fourier-Bessel形式分别表示为:
$$ {\phi _{v3}}(r, \theta) = \sum\limits_{n = 0}^\infty {{J_n}({k_{v\alpha }}r)} ({A_{v3, n}}\cos n\theta + {B_{v3, n}}\sin n\theta) $$ (21) $$ {\psi _{v3}}(r, \theta) = \sum\limits_{n = 0}^\infty {{J_n}({k_{v\beta }}r)} ({C_{v3, n}}\sin n\theta + {D_{v3, n}}\cos n\theta) $$ (22) $$ {\phi _{v1}}({r_1}, {\theta _1}) = \sum\limits_{m = 0}^\infty {{J_m}({k_{v\alpha }}{r_1})} (A_{v1, m}^{(1)}\cos m{\theta _1} + B_{v1, m}^{(1)}\sin m{\theta _1}) $$ (23) $$ {\psi _{v1}}({r_1}, {\theta _1}) = \sum\limits_{m = 0}^\infty {{J_m}({k_{v\beta }}{r_1})} (C_{v1, m}^{(1)}\sin m{\theta _1} + D_{v1, m}^{(1)}\cos m{\theta _1}) $$ (24) $$ {\phi _{v2}}({r_2}, {\theta _2}) = \sum\limits_{L = 0}^\infty {{J_L}({k_{v\alpha }}{r_2})} (A_{v2, L}^{(2)}\cos L{\theta _2} + B_{v2, L}^{(2)}\sin L{\theta _2}) $$ (25) $$ {\psi _{v2}}({r_2}, {\theta _2}) = \sum\limits_{L = 0}^\infty {{J_L}({k_{v\beta }}{r_2})} (C_{v2, L}^{(2)}\sin L{\theta _2} + D_{v2, L}^{(2)}\cos L{\theta _2}) $$ (26) 其中,$ {k_{v\alpha }} = \omega /{\alpha _v} $、$ {k_{v\beta }} = \omega /{\beta _v} $分别表示P波和SV波在沉积介质中的波数。
因此,楔形空间中存在的所有P波和SV波的波势函数可表示为:
$$ {\phi _s} = {\phi ^{(i)}} + \phi _1^{(r)} + \phi _2^{(r)} + {\phi _{s3}} + {\phi _{s1}} + {\phi _{s2}} $$ (27) $$ {\psi _s} = \psi _1^{(r)} + \psi _2^{(r)} + {\psi _{s3}} + {\psi _{s1}} + {\psi _{s2}} $$ (28) 沉积介质中存在的所有P波和SV波的波势函数可表示为:
$$ {\phi _v} = {\phi _{v3}} + {\phi _{v1}} + {\phi _{v2}} $$ (29) $$ {\psi _v} = {\psi _{v3}} + {\psi _{v1}} + {\psi _{v2}} $$ (30) 利用边界条件求解表达式(27)—(30)中的系数。问题的边界条件为楔形空间和沉积表面零应力边界条件及沉积与楔形空间交界面连续条件。
零应力边界条件有:
$$ \tau _{yy}^s = \tau _{yx}^s = 0, \tau _{yy}^v = \tau _{yx}^v = 0, z = 0 $$ (31) $$ \tau _{yy}^s = \tau _{yx}^s = 0, \tau _{yy}^v = \tau _{yx}^v = 0, z' = 0 $$ (32) 界面连续条件分为位移连续条件和应力连续条件,其方程为:
$$ u_r^s = u_r^v, u_\theta ^s = u_\theta ^v, r = a $$ (33) $$ \tau _{rr}^s = \tau _{rr}^v, \tau _{r\theta }^s = \tau _{r\theta }^v, r = a $$ (34) 本文引入大圆弧模拟楔形空间表面,因此结果为近似解析解,边界条件公式(31)、(32)可转换为极坐标下的形式:
$$ \tau _{rr}^s = \tau _{r\theta }^s = 0, \tau _{rr}^v = \tau _{r\theta }^v = 0, {r_1} = d $$ (35) $$ \tau _{rr}^s = \tau _{r\theta }^s = 0, \tau _{rr}^v = \tau _{r\theta }^v = 0, {r_2} = d $$ (36) 在平面P波入射情况下,平面应变问题的位移和应力表达式分别为:
$$ {u_r} = \frac{{\partial \phi }}{{\partial r}} + \frac{1}{r}\frac{{\partial \psi }}{{\partial \theta }} $$ (37) $$ {u_\theta } = \frac{1}{r}\frac{{\partial \phi }}{{\partial \theta }} - \frac{{\partial \psi }}{{\partial r}} $$ (38) $$ {\tau _{rr}} = \lambda {\nabla ^2}\phi + 2\mu \left[ {\frac{{{\partial ^2}\phi }}{{\partial {r^2}}} + \frac{\partial }{{\partial r}}\left({\frac{1}{r}\frac{{\partial \psi }}{{\partial \theta }}} \right)} \right] $$ (39) $${\tau _{r\theta }} = \mu \left\{ {2\left({\frac{1}{r}\frac{{{\partial ^2}\phi }}{{\partial r\partial \theta }} - \frac{1}{{{r^2}}}\frac{{\partial \phi }}{{\partial \theta }}} \right) + \left[ {\frac{1}{{{r^2}}}\frac{{{\partial ^2}\psi }}{{\partial {\theta ^2}}} - r\frac{\partial }{{\partial r}}\left({\frac{1}{r}\frac{{\partial \psi }}{{\partial r}}} \right)} \right]} \right\} $$ (40) 由于上述波函数分别在不同坐标系给出,在引入边界条件前,需要采用Graf加法公式进行坐标变换,由于篇幅有限,坐标变换步骤从略。将楔形空间和沉积介质中的波函数表达式代入边界条件,求解方程组可得到所有波函数表达式的待定系数,将求得的待定系数代入位移表达式即可得到地表位移:
当r≤a时(沉积介质):
$$ \begin{array}{l} \left\{ {\begin{array}{*{20}{c}} {{u_r}(r, \theta)}\\ {{u_\theta }(r, \theta)} \end{array}} \right\} = \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{v(1)}(n, r)}&{I_{12}^{v(1) + }(n, r)}\\ {I_{21}^{v(1) - }(n, r)}&{I_{22}^{v(1)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{A_{v3, n}} + {A_{v1, n}} + {A_{v2, n}}}\\ {{C_{v3, n}} + {C_{v1, n}} + {C_{v2, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\cos n\theta }\\ {\sin n\theta } \end{array}} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{v(1)}(n, r)}&{I_{12}^{v(1) - }(n, r)}\\ {I_{21}^{v(1) + }(n, r)}&{I_{22}^{v(1)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{B_{v3, n}} + {B_{v1, n}} + {B_{v2, n}}}\\ {{D_{v3, n}} + {D_{v1, n}} + {D_{v2, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\sin n\theta }\\ {\cos n\theta } \end{array}} \right) \end{array} $$ (41) 当r > a时(楔形空间):
$$ \begin{array}{l} \left\{ {\begin{array}{*{20}{c}} {{u_r}(r, \theta)}\\ {{u_\theta }(r, \theta)} \end{array}} \right\} = \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{s(1)}(n, r)}&{I_{12}^{s(1) + }(n, r)}\\ {I_{21}^{s(1) - }(n, r)}&{I_{22}^{s(1)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{A_{0, n}} + {A_{s1, n}} + {A_{s2, n}}}\\ {{C_{0, n}} + {C_{s1, n}} + {C_{s2, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\cos n\theta }\\ {\sin n\theta } \end{array}} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{s(3)}(n, r)}&{I_{12}^{s(3) + }(n, r)}\\ {I_{21}^{s(3) - }(n, r)}&{I_{22}^{s(3)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{A_{s3, n}}}\\ {{C_{s3, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\cos n\theta }\\ {\sin n\theta } \end{array}} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{s(1)}(n, r)}&{I_{12}^{s(1) - }(n, r)}\\ {I_{21}^{s(1) + }(n, r)}&{I_{22}^{s(1)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{B_{0, n}} + {B_{s1, n}} + {B_{s2, n}}}\\ {{D_{0, n}} + {D_{s1, n}} + {D_{s2, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\sin n\theta }\\ {\cos n\theta } \end{array}} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{1}{r}\sum\limits_{n = 0}^\infty {\left[ {\begin{array}{*{20}{c}} {I_{11}^{s(3)}(n, r)}&{I_{12}^{s(3) - }(n, r)}\\ {I_{21}^{s(3) + }(n, r)}&{I_{22}^{s(3)}(n, r)} \end{array}} \right]} \left\{ {\begin{array}{*{20}{c}} {{B_{s3, n}}}\\ {{D_{s3, n}}} \end{array}} \right\}\left({\begin{array}{*{20}{c}} {\sin n\theta }\\ {\cos n\theta } \end{array}} \right) \end{array} $$ (42) 至此,完成了问题求解的理论推导,得到的公式(41)、(42)为楔形空间和圆弧形沉积中各个位置的位移。
2. 结果分析
图 2-6给出了不同地形角度(即斜面与水平面夹角分别为0°、60°和90°)的楔形空间在介质参数分别为剪切波速比βv:βs=200:400、密度比${\rho _\text{v}}$:${\rho _\text{s}}$=1.8:1.8以及入射角0°、30°、60°和90°情况下,水平x和垂直y方向的位移幅值。图中横坐标为地面位置坐标x与沉积河谷半径a之间的比值。在结果分析中引入无量纲频率$\eta $,其定义为沉积谷地宽度与入射波波长(λ=βsT)之间的比值,即$ \eta = \frac{{{\rm{2}}a}}{\lambda } = \frac{{{k_{s\beta }}}}{{\rm{ \mathit{ π} }}} = \frac{{\omega {\rm{a}}}}{{{\rm{ \mathit{ π} }}{\beta _{\rm{s}}}}} $,$ T = 2{\rm{ \mathit{ π} /}}\omega $。图 2—6分别为参数$ \eta $等于0.5、1、2、5和10的结果。
影响地表位移的因素包括地形角度(θ0)、入射波的频率($\eta $)以及入射角(θα)。由图可以看出,当给定地形角度和入射频率,变化入射角度时,当入射波以地形的对角线角度入射时,得到的位移曲线是正对称的,地形为180°,波垂直入射得到了正对称地表位移曲线(图 2中的实线和图 5(a))。另外,还能得到一些反对称的曲线,当地形为90°时,水平入射的x方向位移曲线与垂直入射的y方向位移曲线、水平入射的y方向位移曲线与垂直入射的x方向位移曲线是反对称的(图 6(a)、(d));30°入射的x方向位移曲线与60°入射的y方向位移曲线、30°入射的y方向位移曲线与60°入射的x方向位移曲线也都是反对称的(图 6(b)、(c))。从地形对称轴方向入射,沿地表方向及垂直于地表方向的位移也应该是对称的,这也可以作为验证计算结果是否正确的1个标准。
当给定地形角度和入射角度,变化入射频率时(图 2—5),随着入射频率增大,位移幅值曲线的波动也相应地变得复杂。尤其图 5、6对应的入射频率是高频$\eta $=5.0和$\eta $=10.0,可从图中看到曲线的波动非常大。
从图 2—6的结果看,位移幅值的放大随着入射角度、地形角度和入射频率的不同而发生变化。虽然最大值并不一定发生在楔形地形顶点处,但是几乎都发生在x/a=[-1,1]区间,这一区段地表点的位移幅值放大也都大于其它位置地表点,这也从理论上论证了发生在山脊附近的地震,其顶部的震害破坏比较大。
3. 结论
本文利用大圆弧假定和傅立叶-贝塞尔(Fourier-Bessel)级数波函数展开法,给出顶点有1层圆弧形沉积的楔形场地对平面P波散射问题的解析解。分析了地形角度、入射波的频率和入射角度等因素对地表位移放大作用的影响,得出以下结论:
(1)含圆弧形沉积的楔形空间对弹性波的散射同半空间情况有根本的不同,需同时考虑地形和地质不均匀性对地震动的复合影响;楔形夹角、波入射角度、无量纲频率以及沉积内、外介质特性是影响地表位移幅值的主要因素。
(2)当入射波的波长比圆弧沉积半径小很多(即η值较大)时,地表位移看上去更复杂,变化更剧烈,空间分布也更不均匀。
(3)由于楔形地形本身就有不同的角度,对于不同入射角度的P波来说,地表位移最大值出现的地点是不同的,但几乎都出现在x/a=[-1,1]区域内的楔形顶点附近,说明含圆弧沉积的楔形地形顶点附近对地震波的放大作用比较大。
-
-
杜修力, 熊建国, 关慧敏, 1992.平面SH波散射问题的边界积分方程分析法.地震学报, 15(3):331-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000376252 胡聿贤, 孙平善, 章在墉等, 1980.场地条件对震害和地震动的影响.地震工程与工程振动, (1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000199271 梁建文, 张郁山, 顾晓鲁等, 2000.圆弧形层状沉积河谷场地在平面SH波入射下动力响应分析.岩土工程学报, 22(4):396-401. doi: 10.3321/j.issn:1000-4548.2000.04.002 梁建文, 严林隽, 李军伟等, 2001.圆弧形沉积河谷场地在平面P波入射下的响应.岩土力学, 22(2):138-143. doi: 10.3969/j.issn.1000-7598.2001.02.005 廖振鹏, 2002.工程波动理论导论.2版.北京:科学出版社. 刘中宪, 梁建文, 2010a.楔形空间中圆弧形沉积对平面SH波的散射解析解.天津大学学报, 43(7):573-582. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201007002 刘中宪, 梁建文, 2010b.楔形空间中圆弧形凹陷对平面SH波的散射解析解.力学季刊, 31(3):363-370. http://d.old.wanfangdata.com.cn/Periodical/lxjk201003007 史文谱, 刘殿魁, 宋永涛等, 2006.直角平面内圆孔对稳态SH波的散射.应用数学和力学, 27(12):1417-1423. doi: 10.3321/j.issn:1000-0887.2006.12.004 史文谱, 刘殿魁, 禇京莲等, 2007.二维直角平面内固定圆形夹杂对稳态入射反平面剪切波的散射.爆炸与冲击, 27(1):57-62. doi: 10.3321/j.issn:1001-1455.2007.01.010 杨宇, 2005.含圆弧形沉积的楔形地形对平面SH波和P波的散射.天津: 天津大学. http://cdmd.cnki.com.cn/article/cdmd-10056-2006053015.htm 杨宇, 李小军, 贺秋梅, 2011.自贡西山公园山脊场地地形和土层效应数值模拟.震灾防御技术, 6(4):436-447. doi: 10.3969/j.issn.1673-5722.2011.04.009 周锡元, 1965.土质条件对建筑物所受地震荷载的影响.见: 中国地震局工程力学研究所地震工程研究报告集(第二集).北京: 科学出版社. Boore D. M., Larner K. L., Aki K., 1971. Comparison of two independent methods for the solution of wave-scattering problems:response of a sedimentary basin to vertically incident SH waves. Journal of Geophysical Research, 76 (2):558-569. doi: 10.1029/JB076i002p00558 Dermendjian N., Lee V. W., Liang J. W., 2003a. Anti-plane deformations around arbitrary-shaped canyons on a wedge-shape half-space:moment method solutions. Earthquake Engineering and Engineering Vibration, 2 (2):281-287. doi: 10.1007/s11803-003-0011-y Dermendjian N., Lee V. W., 2003b. Moment solutions of anti-plane (SH) wave diffraction around arbitrary-shaped rigid foundations on a wedge-shape half space. ISET Journal of Earthquake Technolog, 40 (2-4):161-172. Dravinski M., 1983. Scattering of plane harmonic SH wave by dipping layers or arbitrary shape. Bulletin of the Seismological Society of America, 73 (5):1303-1319. http://d.old.wanfangdata.com.cn/Periodical/rjxb200603005 Lee V. W., Sherif R. I., 1996a. Diffraction around circular canyon in elastic wedge space by plane SH-waves. Journal of Engineering Mechanics, 122 (6):539-544. doi: 10.1061/(ASCE)0733-9399(1996)122:6(539) Lee V. W., Sherif R. I., 1996b. Diffraction around a circular alluvial valley in an elastic wedge-shaped medium due to plane SH-waves. European Earthquake Engine-Erring, 3:21-28. MacDonald, H. M., 1902. Electric waves. London, England:Cambridge University Press. Sánchez-Sesma F. J., Ramos-Martínez J., Campillo M., 1993. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves. Earthquake Engineering & Structural Dynamics, 22 (4):279-295. doi: 10.1002-eqe.4290220402/ Sánchez-Sesma F. J., 1985. Diffraction of elastic SH waves by wedges. Bulletin of the Seismological Society of America, 75 (5):1435-1446. Todorovska M. I., Lee V. W., 1991. Surface motion of shallow circular alluvial valleys for incident plane SH waves-analytical solution. Soil Dynamics and Earthquake Engineering, 10 (4):192-200. doi: 10.1016/0267-7261(91)90033-V Trifunac M. D., 197l. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 61 (6):1755-l770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=077665160333ddbe42edea5a6db53c25 Wong H. L., Trifunac M. D., 1974. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 64 (5):1389-1408. http://www.cnki.com.cn/Article/CJFDTotal-DZXY201105007.htm Yuan X. M., Liao Z. P., 1995. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arccross-section. Earthquake Engineering & Structural Dynamics, 24 (10):1303-1313. http://www.sciencedirect.com/science/article/pii/0267726194900116 -