• ISSN 1673-5722
  • CN 11-5429/P

基于形变仪器同震形变波衰减规律的研究

龚丽文 陈丽娟 刘琦 郑许东

陈波, 高孟潭, 吴健, 俞言祥, 温增平, 高杰. 基于智能终端和互联网的中国地震动参数区划图服务系统[J]. 震灾防御技术, 2018, 13(3): 697-708. doi: 10.11899/zzfy20180321
引用本文: 龚丽文, 陈丽娟, 刘琦, 郑许东. 基于形变仪器同震形变波衰减规律的研究[J]. 震灾防御技术, 2018, 13(2): 399-409. doi: 10.11899/zzfy20180215
Chen Bo, Gao Mengtan, Wu Jian, Yu Yanxiang, Wen Zengping, Gao Jie. A Service System for the Seismic Ground Motion Parameters Zonation Map of China Based on Smart Terminal and Internet Technique[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3): 697-708. doi: 10.11899/zzfy20180321
Citation: Gong Liwen, Chen Lijuan, Liu Qi, Zheng Xudong. Study on Attenuation Law of Co-seismic Deformation Waves Based on Instruments[J]. Technology for Earthquake Disaster Prevention, 2018, 13(2): 399-409. doi: 10.11899/zzfy20180215

基于形变仪器同震形变波衰减规律的研究

doi: 10.11899/zzfy20180215
基金项目: 

2017年度震情跟踪定向工作任务 2017010231

2017年度震情跟踪定向工作任务 162202

详细信息
    作者简介:

    龚丽文, 男, 生于1988年。助理工程师。主要研究方向:定点形变监测及前兆异常。E-mail:glw777@126.com

Study on Attenuation Law of Co-seismic Deformation Waves Based on Instruments

  • 摘要: 基于黔江台2套倾斜仪记录到的442次同震形变波,对比分析其波谱特征,分区域统计其振幅A与震级M的关系。研究发现:①垂直摆的震动周期和阻尼系数均较小,其波谱信息记录较丰富,适合波谱的时频分析;水管仪的基线较长,阻尼系数较大,抗干扰能力较强,其振幅记录较稳定,适合能量衰减分析;②垂直摆与水管仪的A-M关系均呈指数关系,随着震中距的增加,曲线的拟合程度增强,且指数系数b与lna呈负线性相关;③衰减因子k是用来量化同震形变波能量衰减的主要系数,它随着震中距(≤6000km)增加而增大,且各区域的衰减因子具有一定规律性,对后期建立巨大远震触发型地震模型及其参数设置具有一定指示意义。
  • 随着国家地震烈度速报与预警项目工程的实施,将在全国建设大量烈度计观测台站,弥补现有地震台网能力的不足,有效提高减灾和社会服务能力。其中,天津地区已在京津冀简易烈度计预警示范工程中先行建设了80个简易烈度计台站,与天津行政区内具备实时传输能力的测震台站和强震动台站共同组建天津地震预警观测系统(许可等,2019)。现有观测系统中缺少台站设备状态监控,台站各种设备基本处于未知状态,台网中心设备维护人员对台站设备状态的判断仅限于烈度计信号通断与否,台站出现故障后(如市电故障、电压不稳、网络故障、设备死机等),运维人员无法远程判断故障原因并进行有效处理,须到现场进行排查及维修,增加了运维成本,且效率较低。针对上述问题,设计烈度计台站远程监控系统,使台网和台站值班人员可在线实时查看仪器运行状态,及时发现各类设备故障,并对故障进行远程处理,提高台网管理与维护能力。

    烈度计台站远程监控系统物理架构如图 1所示,分为硬件设备和软件平台。硬件设备主要包括信息采集设备、服务器、PC和手机,其中,信息采集设备部署在烈度计台站,是整个监控系统的数据支撑,也是逻辑架构中的数据采集层。软件平台部署在监控中心,涉及业务层的使能平台和大数据页面、数据仓库层中的数据库、服务器中的MQTT中间件、手机APP等。

    图 1  监控系统物理架构
    Figure 1.  Physical architecture of monitoring system

    信息采集设备采集台站供电、网络、仪器状态等信息,将采集到的原始数据上传至使能平台进行存储,将原始数据传至解析器,解析器对电源数据、专业仪器数据、网络数据等进行类型分析,同时判断数据是否正常,并进行数据分类存储与统计分析,大数据界面通过GIS地图显示台站状态,对异常数据台站进行报警。运维人员查看报警台站实时数据信息,通过使能平台或手机APP向信息采集设备发送控制指令,对观测仪器等设备进行远程维护。

    烈度计台站信息采集设备通过对台站设备运行状态、供电状态、网络状态等进行全方位监测,及时发现并处理存在的问题,最大程度地减小设备离线率和故障率,确保台站设备安全可靠地运行。根据实际需求,本系统具有以下功能:

    (1)基于NB-iot通信具有功耗低和费用低的特点,信息采集设备上行数据接口采用单独的NB-iot通信链路,信息采集设备采集台站监控信息,并通过NB-iot网络回传至台网监控中心的监控平台。

    (2)信息采集设备可通过以太网口对台站现有连接网络设备(路由器和烈度计)进行网络通讯,发现问题及时报警。设备可通过以太网读取烈度计状态信息及实时数据信息,进而对专业设备状态进行监控(王建国等,2010)。

    (3)信息采集设备支持接入、接出市电,并对市电电压、电流、功率、功率因数、频率、用电量等参数进行监测。同时信息采集设备不影响其他设备供电,即使信息采集设备出现故障,也不会影响其他设备的正常供电。

    (4)设备具有多路I/O输入及1路RS485输入接口,支持其他设备接口接入,对设备运行状态进行监测,从而判断设备是否正常运行。

    (5)信息采集设备设有1路继电器输出,将需控制设备的供电线路接入继电器常闭端,即可通过终端发送特定指令完成相应设备的关闭、打开和重启(陈吉锋等,2012)。

    (6)信息采集设备内置电容,能保证台站在断电情况下短时间工作,将故障信息回传。

    设备核心功能模块主要包括核心嵌入式控制器(MCU)模块、NB通信模组模块、能耗测量模块、网络通讯模块。信息采集设备功能模块逻辑图如图 2所示,其中,主控模块是设备的核心,通过C语言和汇编语言实现设备核心算法与逻辑控制,完成对外围硬件的控制功能;电源模块为控制电路提供电源;数据采集模块实现不同通讯协议设备的接入,包括电能计量模块、I/O接口输入、RS485通讯接口等;以太网模块实现与本地路由器之间的通讯,通过TCP传输协议查询台站设备间的网络连通情况,包括烈度计、路由器等网络联通信息(宁晓青等,2019);控制模块通过接收主控模块的指令实现设备断电、重启等操作;NB模块为通信模块,可使用3家运营商的NB服务,实现监控信息及控制指令的传输。

    图 2  逻辑图
    Figure 2.  Logic diagram

    上位机设备配置软件通过RS485接口与设备进行通信,实现NB-iot网络、以太网、测量量、烈度计等参数的配置,上位机配置软件界面如图 3所示。NB-iot网络参数配置实现设备与监控中心接收数据服务器的通信,需配置的主要参数包括MQTT服务器地址和端口、登陆ID及订阅主题;以太网参数配置实现设备与烈度计和路由器间的通信,需配置的主要参数包括设备网卡IP地址、网关地址和掩码地址;测量量参数配置实现台站网络与供电的监控测量,需配置的主要参数包括台站设备IP地址、环境参数(如电压、功率、温度等);地震烈度计监测参数配置实现烈度计状态信息的监控测量,需配置的参数主要包括烈度计类型和IP地址。

    图 3  上位机配置软件界面
    Figure 3.  Upper computer configuration software interface

    监控平台是基于物联网侧设备接入使能的云化平台系统,能有效监控烈度计台站设备数据的采集、存储、分析、数据展现及发布、智能管控等,平台具备丰富的对外数据接口,可简单灵活地通过插件编程实现不停机对接收数据保存、解析、加解密、格式转换等。

    监控平台逻辑架构从功能层上分为数据仓库层、功能层和业务层(图 4)。

    图 4  监控平台逻辑架构
    Figure 4.  Logical architecture of monitoring platform

    数据仓库层实现对数据存储表的管理,包括信息采集设备上传的原始数据表、解析数据表、用户管理表、业务报表、系统监控表、参数设备表。功能层包括监控平台实现的功能,如身份认证、数据解析、数据查询和报表分析等。业务层包括使能平台和大数据页面,使能平台主要完成数据查询统计和下行,大数据页面完成数据统计分析及展示。

    监控平台从使用上分为用户模块、设备模块、应用模块和解析器模块,其中,用户模块为基础,设备模块为纽带,应用模块为主干,解析器模块为重点,各模块功能见表 1

    表 1  监控平台各模块功能
    Table 1.  Functions of monitoring platform modules
    模块 功能
    用户模块 存储用户的基本信息,按登录用户信息显示不同的平台信息
    设备模块 对上行数据进行分类,将数据与设备对应,对设备基本信息进行查询与维护
    应用模块 作为设备与解析器的依托,控制设备离线监测、数据解析、设备报警等功能是否开启
    解析器模块 将所有上行数据解析后展现在监控平台的大数据界面上
    下载: 导出CSV 
    | 显示表格

    烈度计台站信息采集设备已在80个简易烈度计台站安装部署,监控平台在台网中心服务器进行部署,监控平台基于B/S架构进行设计,方便用户操作。值班人员通过监控平台大数据界面(图 5)查看台站运行状态,发现报警及时远程维护。监控系统在实际运行过程中多次监测到台站供电中断、网络故障和烈度计数据异常。当监测到台站供电中断时,运维人员第一时间给烈度计台站看护人员打电话确认供电故障的具体原因,确保供电故障及时修复;当监测到台站网络中断时,通过远程控制路由器重启解决由于路由器死机导致的网络故障;当监测到烈度计数据异常时,通过远程控制烈度计重启解决由于烈度计死机导致的数据异常问题。

    图 5  监控平台大数据界面
    Figure 5.  Big data interface of monitoring platform

    监控平台还具有大数据统计分析功能,如可对台站报警类型及报警次数日排名、台站通信流量排名、台站电压日统计报表、报警次数月统计报表、台站报警类型占比、台站报警状态占比进行展示。运维人员可根据相关统计报表有针对性地对台站各类设备进行定向优化升级,保证观测数据的稳定可靠。

    烈度计台站远程监控系统可实时监控烈度计台站各设备运行状态,设备如果出现故障可判断具体故障原因,并及时进行远程维护,减少运维成本,有效提高运维人员工作效率和监测数据的连续率,具有应用与推广价值。

  • 图  1  黔江台站及仪器概况

    Figure  1.  Overview of Qianjiang Station and Instruments

    图  2  同震形变波波形图

    Figure  2.  The oscillogram of co-seismic deformation waves

    图  3  同震响应幅度对比图

    Figure  3.  The comparison of co-seismic response amplitudes

    图  4  不同地震对应倾斜仪的幅度分布图

    Figure  4.  The distribution of amplitudes recorded by inclinometer with different earthquakes

    图  5  不同研究区域振幅-震级关系图(一)

    Figure  5.  Amplitude-magnitude relationship in different tectonic regions

    图  5  不同研究区域振幅-震级关系图(二)

    Figure  5.  Amplitude-magnitude relationship in different tectonic regions

    图  6  指数系数b与lna关系图(a)及衰减系数k与震中距关系图(b)

    Figure  6.  Plots of relationship between exponent coefficient b and lna (a) relationship between attenuation coefficient (k) and epicentral distance (b)

    表  1  不同研究区域振幅

    Table  1.   Amplitude-magnitude relationship in different study regions

    地区 构造环境 /km Mic Nc/个 Mis Ns/个
    中国川滇地区及邻区 板块挤压环境 约600 4 56 4 48
    中国东海-中国台湾地区 板块俯冲环境 约1800 5.1 29 5.2 25
    日本岛弧地区 板块俯冲环境 约2800 5.6 58 5.6 62
    印度尼西亚地区 板块挤压环境 约4000 5.4 68 5.5 67
    所罗门群岛地区 板块挤压环境 约5000 6 29 6 44
    秘鲁-智利地区 板块俯冲环境 约18000 6.2 36 6.2 31
    注:为震中距;Mi为最小震级;N为地震记录数;c表示垂直摆;s表示水管仪。
    下载: 导出CSV

    表  2  不同研究区域的拟合参数

    Table  2.   The fitting parameters in different tectonic regions

    区域 ln $ {{a}_{\text{c}}}$ bc Rc2 kc $ \text{ln}{{a}_{\text{s}}}$ bs Rs2 ks
    中国川滇及邻区 -0.37 0.68 0.29 0.98 -8.52 1.78 0.76 1.79
    中国台湾-中国东海 -10.82 2.20 0.62 1.34 -10.82 2.11 0.75 1.85
    日本岛弧 -11.51 2.08 0.75 1.93 -10.82 2.12 0.80 1.92
    印度尼西亚 -12.72 2.27 0.78 2.14 -12.72 2.43 0.81 2.01
    所罗门群岛 -18.42 2.95 0.80 2.84 -15.42 2.62 0.83 3.09
    秘鲁-智利 -13.12 2.15 0.82 3.44 -12.72 2.33 0.88 3.20
    注:ab为拟合参数;R2为拟合方差;k为衰减因子;c表示垂直摆;s表示水管仪。
    下载: 导出CSV
  • 蔡骞, 2013.伸缩仪和水管仪测试与实验研究.武汉:中国地震局地震研究所, 1-53. http://mall.cnki.net/magazine/Article/WLSL201303004.htm
    曹喜, 董海龙, 张彩艳等, 2014.嘉峪关水管倾斜仪观测资料映震能力分析.地震地磁观测与研究, 35(3-4):174-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdcgcyyj201403028
    崔庆谷, 杨星, 杨跃文, 2014.水管仪、垂直摆及水平摆高频段记录数据差异的对比.大地测量与地球动力学, 34(4):175-178. http://www.oalib.com/paper/4322576
    方宏芳, 刘序俨, 张凯, 2010.漳州地震台伸缩仪和体应变仪同震响应分析.地震研究, 33(3):287-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201003008
    冯德益, 聂永安, 郭瑞芝等, 1993.构造波及其在地震预报中的应用.地壳形变与地震, 13(1):1-9. http://www.cqvip.com/QK/95685X/199301/1008544.html
    冯德益, 吴国有, 陈化然等, 1994.地震波动力学特征变化指标在短期地震预报中的应用.地震, (1):12-22. http://www.cqvip.com/QK/92280X/199401/1308671.html
    公茂盛, 谢礼立, 章文波, 2003.地震动输入能量衰减规律的研究.地震工程与工程振动, 23(3):15-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd200303003
    李宏男, 孙立晔, 2001.地震面波产生的地震动转动分量研究.地震工程与工程振动, 21(1):15-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd200101003
    刘琦, 张晶, 晏锐等, 2013.高采样率四分量钻孔应变同震响应分析.中国地震, 29(1):57-67. http://www.cqvip.com/QK/95750X/201301/45872294.html
    吕品姬, 陈志遥, 赵斌等, 2010.定点倾斜观测映震能力综述.大地测量与地球动力学, 30(S2):50-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz2010z2012
    牛安福, 张晶, 吉平, 2005.强地震引起的同震形变响应.内陆地震, 19(1):1-7. http://www.cqvip.com/QK/97898X/200501/16012632.html
    牛安福, 吉平, 高福旺等, 2006.印尼强地震引起的同震形变波.地震, 26(1):131-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=diz200601018
    邱永平, 2011.宁波台动水位与垂直摆对印尼8.9和日本9.0级地震的同震响应.国际地震动态, (4):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD200901007.htm
    吴利军, 冯琼松, 张波, 2016.体应变地震波最大振幅与地震震级和震中距的统计关系探讨.震灾防御技术, 11(3):592-599. doi: 10.11899/zzfy20160315
    吴艳霞, 2005. VS新型垂直摆倾斜仪的研究. 武汉: 武汉理工大学, 1-58.
    熊先保, 林立峰, 杨婕, 2013.水管倾斜仪与摆式倾斜仪抗干扰能力分析.华南地震, 33(2):34-40. http://d.wanfangdata.com.cn/Periodical_hndz201302004.aspx
    杨玲英, 崔庆谷, 毛先进等, 2012.云龙地震台水管倾斜仪与水平摆倾斜仪同震响应对比分析.地震研究, 35(1):48-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201201009
    杨跃文, 刘冰冰, 秦嘉政等, 2010.丽江台水管仪频谱分析及同震震后效应研究.防灾减灾学报, 26(1):61-65. http://www.cqvip.com/QK/98587A/201001/33515134.html
    张利兵, 刘仕锦, 阳光等, 2013.姑咱台和乡城台VS型垂直摆倾斜仪对比分析.四川地震, (4):25-31. http://www.cqvip.com/QK/92061X/201304/48064782.html
    张致伟, 程万正, 阮祥, 2008.用SSY伸缩仪资料研究巨大远震引起的振荡波及谱.大地测量与地球动力学, 28(5):27-33. http://www.oalib.com/paper/4512164
    Uang C. M., Bertero V. V., 1990. Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1):77-90.
  • 期刊类型引用(1)

    1. 方一成,周蓝捷,方伟华,王遹其,薛蕾. 烈度计台网数据质量分析与异常检测. 数字技术与应用. 2023(11): 20-22 . 百度学术

    其他类型引用(0)

  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  35
  • PDF下载量:  6
  • 被引次数: 1
出版历程
  • 收稿日期:  2017-08-10
  • 刊出日期:  2018-06-01

目录

/

返回文章
返回